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Abstract: Developments in the medical field have opened the opportunity to conduct analyses on a 
personalized patient level. One of the important analyses that can be conducted is the cellular response 
to engineered materials, and the most appropriate non-invasive methods are imaging. These images of 
the cells are unstained brightfield images, as they are acquired from multiparametric microfluidic 
chambers in the presence of biomaterials and fluids that can change the optical path length over time as 
the cells’ health state is monitored. These experimental conditions lead to an image dataset with unique 
illumination, texture, and noise spectrum. This study explores the optimization of supervised cell 
classification by combining feature extraction architectures and machine learning classifiers, with a 
focus on applications in biomaterial risk assessment. Brightfield microscopy images of three cell types 
(A549, BALB 3T3, and THP1) were analyzed to evaluate the impact of Inception V3, Squeeze Net, and 
VGG16 architectures paired with classifiers including KNN, Decision Tree, Random Forest, AdaBoost, 
Neural Networks, and Naïve Bayes. Dimensionality reduction using Information Gain was applied to 
improve computational efficiency and accuracy. Butterworth filters with varying parameters were used 
to balance the enhancement of image features and noise removal, improving classification performance 
in certain cases. Experimental results demonstrate that the VGG16 architecture, when paired with 
Neural Networks, achieves higher classification accuracy as measured by different metrics. The 
improved accuracy when using Butterworth filters compared to the unfiltered dataset and the 
differences between various Butterworth filters indicate the importance of optimizing filter parameters 
for these types of images. 

Keywords: Biomaterial risk assessment, Cell image classification, Classifier, Feature extraction, Personalized medicine,  
Supervised classification. 

 
1. Introduction  

Biomedical research covers a broad spectrum of areas that often are highly interdisciplinary by 
integrating molecular biology [1] bioelectronics engineering [2] genetics [3] biomaterials [4, 5] 
clinical medicine [6] and data science [7]. The major objective is to understand biological processes 
and disease mechanisms, to improve diagnostics and intervention, to develop effective treatments, to 
design and synthesize materials that interact safely with the biological systems. Over the last two 
decades, a range of advancements in biomaterial engineering have significantly enhanced the field, 
making it possible to conduct patient evaluations and treatments at a more personalized level. Major 
drives include: i) high-resolution 3D bioprinting, ii) novel nanofabrication techniques, iii) development 
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of functionalized bioactive coatings, iv) stimuli responsive hydrogels, v) advanced imaging [8]. The 
control of the porosity and the pore size on the nanofibers are important parameters in biomaterial-cell 
interaction and these can both be fabricated with high control aiming to mimic biological systems [9, 
10]. These three-dimensional structures can be constructed using nanofibers produced by 
electrospinning and the whole serves as an extracellular matrix that provides mechanical support for the 
biological samples that can be studied [11]. These structures facilitate the evaluation of the cell 
interaction with nano-structured and micro-structured surfaces to further study the cellular response to 
engineered materials [12]. The development of bioactive coatings that are patient-specific [13, 14] the 
novel use of stimuli-responsive hydrogels and the development of high-resolution microCT imaging 
help understand better the cell-material interaction at the cellular level.  

Often the material that needs to be studied is a biomaterial whose toxicity information at the 
personalized level is essential [15]. Having the most biocompatible biomaterial evaluated in this form is 
a new possibility for all patients in need of implants. To determine this, microscopy has to be used for a 
large number of images for experiments conducted mostly on multiparametric microfluidic chips over 
the course of a few weeks [16]. The cellular response to engineered surfaces and biomaterials at 
different concentrations is often exhibited in electrochemistry-based measurements such as impedance 
and chronoamperometric measurements [17]. The need to conduct measurements that are affected by 
free charges or ions means that one cannot use staining for contrast enhancement thus limiting the 
contrast. At the same time the cells reside in hydrogels that mimic tissue behaviour and whose index of 
refraction varies depending on their relative hydration level. The spatial variation of the index of 
refraction often results in images that mimic speckle patterns. Further details on the challenges of 
microscopy in these settings are provided in Uka, et al. [18]. 

These limitations in microscopy can be overcome by employing: i) hardware-based methods such as 
using incoherent light, rotating diffusers [19]; ii) software-based methods including wavelet transform 
denoising [20] gaussian filters; iii) hybrid methods by combining hardware and software methods and 
iv) image reconstruction algorithms [21]. In the case of selecting a biomaterial for an implant, medical 
practitioners need to test a few samples (blood, saliva, different cell types etc) from a patient in contact 
with different biomaterials at different concentrations. The microscope images need to undergo both 
qualitative (classification) and quantitative (area of cells, perimeter of cells, cell counting etc) evaluation 
[8, 22-24] and these results help deduce the toxicity of a biomaterial [18]. All the insights that we 
learn are focused particularly in assessing biomaterial toxicity level by studying changes in the 
morphological features of different immune cells.  

Analyzing the changes in the morphological features of same cells constitutes an intraclass cell 
classification task, i.e. evaluating fine grained to extreme differences on the components of a cell such as 
the cytoplasm. All the images that are acquired using brightfield microscopy in the microfluidic 
chamber settings - including different cell types - have common features including illumination, texture, 
dimensionality, and noise spectrum. Interclass cell image classification would require the identification 
of slightly high differences in the images [25, 26]. Overall, the intraclass and interclass brightfield cell 
image classification constitutes an excellent and robust platform for benchmarking the performance of 
deep learning models. The techniques may include both supervised [15, 27] and unsupervised methods 
[28, 29]. This study focuses on classification of unstained images of three distinct cell lines: A549 
(human lung carcinoma), Balb 3T3 (fibroblast) and THP1 (monocyte) prior to their exposure to the 
biomaterials. The cell images are acquired by Dr. Vrana’s group (a co-author of this study) using a 
brightfield microscope, which has a lower resolution and contrast compared to advanced imaging 
systems. 

Inception V3, SqueezeNet and VGG 16, all pre-trained using the ImageNet dataset for object 
detectetion, are the selected architectures to extract the image features. These three architectures have 
been commonly reported in the literature and their selection was done based on their fast and accurate 
performance in this specific dataset. Inception V3 architecture extracts higher dimensional features by 
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balancing depth and computational cost of different size filter used at the same layer Szegedy, et al. [30] 
and Tamilarasi and Gopinathan [31]. Wang, et al. [32] reported a sensitivity of 95.41% when 
classifying pulmonary chest X-ray images. SqueezeNet architecture can achieve a high image 
classification accuracy even though it is strongly compressed and uses few parameters compared to 
other architectures [33]. This architecture and its improved versions have achieved CT scan 
classification accuracy from 93.2%-95.8% [34]. VGG16 architecture is a simple 16 layered architectures 
that uses 3x3 convolution kernels and can be further changed to increase its accuracy [35]. 

Then, the extracted features are classified using various machine learning algorithms such as: K 
Nearest Neighbors (KNN), Decision Tree, Random Forest, AdaBoost, Simple Neural Network and 
Naïve Bayes. Research shows that the neural networks classifiers have a better performance compared 
to other models [36]. 

In order to reduce the complexity and lower the number of features, several methods can be used 
such as Principal Components Analysis (PCA), Information Gain, combination of both- a hybrid form 
[37-39]. The efficiency and the performance of the model is evaluated when: a) all extracted features are 
and b) 10 most important features are selected through Information gain. [40]. During the evaluation 
process different metrics such precision, recall, F1 score, accuracy etc. are used. 

 In evaluating for a robust framework for cell image classification several filters can also be used 
[41] as they can significantly improve the quality of the features by providing a balance between noise 
reduction and feature preservation. The use of the Butterworth filters with the objective of improving 
classification may strongly depend on the dataset, its quality, texture and noise spectrum and careful 
analysis would be needed in our cell image dataset. Minoshima, et al. [42] have optimized the cut off 
frequencies of the Butterworth filters for brain images, and in other works where optimal combination 
of filters including Butterworth is reported [43]. This work aims to find a robust method that is fast 
and accurate that can be easily implemented in the future in a low-cost, portable biomaterial 
personalized testing device. After analyzing the optimal architecture-classifier combination we evaluate 
the effect of the Butterworth filters with different parameters in the image classification.  
 

2. Materials 
2.1. Image Features 

The classification is done on three different cell image datasets. A549, Balb 3T3, and THP-1 cells, 
each representing a distinct tissue or immune function, exhibit different baseline morphologies that can 
be used to accurately distinguish them from each other prior to biomaterial exposure. 

A549 cells, derived from human lung epithelial carcinoma, display a polygonal, cobblestone-like 
morphology, typical of epithelial cells. These cells tend to grow in a sheet-like manner, with tight cell-
to-cell junctions, making them appear compact and well-ordered under high-resolution microscopy 
[44]. Balb 3T3 cells, a fibroblast cell line, show an elongated, spindle-like shape, characteristic of 
fibroblasts. These cells exhibit a scattered growth pattern with elongated processes extending from the 
cell body. Their morphology is key in distinguishing them as fibroblast-like cells that contribute to 
connective tissue formation [45]. THP1 cells, a monocyte cell line, exhibit a round, non-adherent 
morphology when in their undifferentiated state. THP-1 cells float in suspension, unlike A549 and Balb 
3T3, and do not adhere to culture surfaces. Upon differentiation into macrophages, they become 
adherent and take on an irregular, spread-out shape, which is often used as a marker of macrophage 
activation [46]. 

These three different cells all have different cell features, and it is easier to distinguish THP1 from 
the others when they are not living in clusters due to their round shape (see Figure 1). However, BALB 
3T3 and A549 can be easily confused, especially when the number of cells in an image is very high. The 
images are taken using a brightfield microscope, having low contrast, different brightness, and non-
uniform background illumination. All these factors may affect the identification of cell features, 
especially at images where the edges of the cells are very difficult to distinguish from the background. 
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This would significantly decrease the accuracy of the cell identification and classification.  
 

 
Figure 1.  
Different cell image features for A549, BALB 3T3 and THP1. 

 
2.2. Dataset 1 Details 

The dataset consists of 252 images in total, of size 1024 x 1280 pixels, taken at day one at three 
different types of cells: A549, BALB 3T3 and THP1. There are 84 images per each type of cell, divided 
into 56 images for training and 28 images for testing, 66% and 34% respectively. So, the training dataset 
consists of 168 images in total, and the testing dataset has 84 images. 
 
2.3. Dataset 2 Details 

The number of original images is low and the image size is very large compared to cell size. The 
original images are cropped to smaller ones down to 256x256 pixels. The newly formed dataset is 
cleaned by removing empty crops (only background). After cleaning, there are 1580 images per each 
type of cell, divided into 1052 (66%) and 528 (34%) images into training and testing dataset respectively. 
So, in total the training dataset consists of 3156 images and the testing dataset consists of 1584 images. 
Some Balb 3T3 cells have a large cytoplasm (when the confluency is low) that can be represented by 
image sections larger than 128x128 pixels and this the reason why the smallest cropped image used is 
256x256.  
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2.4. Butterworth Filter 
 Butterworth filters are both low-pass and high pass filters that are widely used for image 

enhancement [47, 48]. These filters are applied in frequency domain and are known to effectively 
reduce noise while preserving important information. Their usage in these types of cell images, are very 
useful since they can enhance cytoplasm features, sharpen the image without the blurring effect, making 
it easier for the cells to be detected, especially on the images that have a low contrast compared to the 
background (see Figure 2,3). The passband and the stopband frequencies can be changed to find the 
optimal filter values.  
 

 
Figure 2.  
Filter spectrum for the Bandpass filter (up) and an example of the usage of Butterworth filter in D1. 

 
The order of the filter is another parameter that affects how much we want to smooth out fine-grain 

details or enhance the edges and cell contours. In this work, three types of filters BW1(lowpass=30, 
highpass=120, order=4), BW2 (lowpass=30, highpass=150, order=4), BW3 (lowpass=50, 
highpass=150, order=4) will be used to check how the accuracy changes when a preprocessing step is 
applied to the original images (Dataset 1).  
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Figure 3.  
Cell images for A549, BALB 3T3 and THP1 after applying Butterworth filters. 

 

3. Methods 
3.1. Feature Extraction 

The key cell differences between these cell types can be summarized as:  a) A549 cells have a 
polygonal shape, tight cell junctions, cobblestone appearance; b) Balb 3T3 cells have a spindle-like, 
elongated shape, scattered growth with extended processes; c) THP1 cells are round, non-adherent (in 
monocytic form). A higher classification performance means that the algorithm can detect these on the 
extracted image features. Dhal and Azad [49] provide a deep analysis regarding feature selection and 
feature extraction methods, based on related research. The extraction of image features is done by using 
three different architectures: Inception V3, SqueezeNet and VGG 16. They are all pre trained on 
ImageNet, a very large dataset consisting of more than 14 million images, 20.000 categories that is used 
in object recognition research.  

Inception V3 [30] utilizes inception modules to extract image features at different scales. These 
modules apply convolutions of different sizes (1x1, 3x3, 5x5) simultaneously, rather than sequentially, in 
order to extract the features. This aspect is very effective when analyzing images of varying features 
scales, and this is why Inception V3 architecture performs well on cell images analysis. Inception V3 has 
been successfully used in medical image analysis, including cancer cell classification [50, 51] and 
pathology image recognition [52-55] due to its efficiency in feature extraction and classification 
accuracy. The total number of extracted feature vector sizes per image is 2048.  
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SqueezeNet [33] is a very efficient architecture with a compact design, that reaches high accuracy 
with way less parameters compared to other architectures. It uses fire modules to balance accuracy with 
computational efficiency. The fire modules provide two different processes “squeezing” and “expanding. 
The first one compresses the input channels with 1x1 convolutions, while the second one increases the 
input channels by combining 1x1 and 3x3 filters. Its compressed nature, mixed with the ability to 
extract important features and produce high results from them, makes it ideal for usage in a portable, 
low-cost device. This architecture has been used for tumor cell image classification [56-58] and other 
object classification [59]. The total number of extracted features per image is 1000. 

VGG-16 [60] architecture is deeper than the other mentioned ones, and requires more time during 
the training and testing process. This is due to the fact that it has 16 layers, primarily composed of 3x3 
convolutional filters, but the number can be adjusted to reach higher accuracy.  Because of its nature, it 
is able to extract hierarchical features from images and recognize complex patterns, which is why VGG-
16 has been extensively used in medical imaging tasks [61] including cell classification [62] tumor 
detection [63] and other diagnostic tasks [64]. While VGG-16 is very powerful in feature extraction, 
the number of features extracted per image is high, 4096 to be precise, which may not be ideal in terms 
of computational power. 

As the number of features extracted from these three models is high, dimensionality reduction using 
Information Gain is applied to select top 10 relevant features per each model. Information Gain finds 
these features by evaluating each feature contribution to the classification, and then selects those that 
can distinguish each class better [40, 65]. Applying dimensionality reduction to 10 most relevant 
features is important for several reasons such as: i) computational efficiency, since a smaller feature 
dataset reduces the computational power, making it feasible for implementation in a portable, low- cost 
device; ii) reduced risk of overfitting and iii) faster processing and real time evaluation, which is essential 
in these types of devices.  
 
3.2. Classifiers 

The classifiers selected in this work are KNN, Decision Tree, Random Forests, AdaBoost, Neural 
Network and Naïve Bayes. 

K-Nearest Neighbours [66] is a simple yet effective classification algorithm that classifies instances 
based on the closest training examples in the feature space. For each new cell image, the algorithm 
identifies the “k” nearest neighbours in the training data and assigns the majority class among those 
neighbours as the predicted class. The choice of “k” can affect the algorithm’s performance, small values 
of “k” can lead to sensitivity to noise, while larger values can result in smoother boundaries between 
classes. It can be very effective for real time applications, but often struggles in high dimensionality 
data.  

Decision Tree [67] is a conditional classifier, where features are shown as nodes, and the 
conditional rules, shown as edges, connect the nodes until the predicted class label, and they also decide 
the flow of the algorithm until the final decision. They offer a visual representation of the combination 
of features per each final class decision. Due to their conditional rules, they are a good choice for 
problems with non-linear features, but may suffer from overfitting. 

Random Forest [68] uses multiple decision trees on its core, in order to improve the performance. 
It tries to overcome the problem of overfitting in Decision Trees, by calculating the average of 
predictions of the trees, making it more robust to noisy data or small datasets. During the training 
process, it selects a random subset from the training data and uses it to train each tree in the forest. 
Every tree generates a random subset of features, and the results are aggregated in the end. By doing 
so, the model is able to train on each features of the dataset, proving to be very effective when 
classifying noisy and high dimensionality data. 

AdaBoost [69] Adaptive Boosting is an ensemble learning method that tries to increase the 
accuracy of the weak classifiers by putting more emphasis on the hard to classify objects or instances. 
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The training process is done in a group of classifiers sequentially and for each iteration, it gives more 
weight to the wrongly classified objects or instances from the previous step.  The final result is a 
combination of all the classifiers, giving more weight to the ones that had higher accuracy on the hard 
to classify instances.  

Neural Network [70] uses multiple layers of neurons in order to extract complex. The neurons are 
connected together in every successive layer, where each neuron-connection represents a feature 
transformation. The training process is done in a hierarchical model, which often gives a high accuracy, 
to the cost of computational power. They are used for various tasks in image analysis.  

Naïve Bayes [71] classifiers is based on the Bayes Theorem and on the estimation that the features 
extracted are conditionally independent from the class label. Certainly, this assumption may not be true, 
however, its performance is quite effective in different applications. The algorithm calculates the 
posterior probability for each class. The class that has the highest value is chosen to be the final 
predicted class label. This simple, yet effective classifier has proven to be a good selection for datasets 
containing high number of features.   
 
3.3. Evaluation Metrics 

The performance of each classifier during the training process is evaluated through a 5-fold and 10- 
fold cross validation method. This method divides the training dataset into 5 or 10 subsets. Then, it 
randomly selects a subset to be the testing set, while the rest are used for training.  Several studies have 
studied the effect of the cross validation [72] and there are reports that there are optimal values for k in 
the k-fold cross validation that directly affect the accuracy [73]. Nevertheless, cross validation method 
ensures that each subset of the data is used both as a training/testing set, making it very robust and 
providing more reliable information. During the testing process, a blind dataset is used to make sure to 
check how the classifiers perform in unseen data. The performance evaluation metrics that are used are 
accuracy, precision, recall (sensitivity), F1 score, Area under the Curve (AUC), and MCC.  

Accuracy (1) is calculated as the ratio of the correctly classified instances or object over the whole 
dataset. Although it is a fundamental metric, it may not be the best indicator for imbalanced datasets, 
where a dominant class can disproportionately influence the results.  

   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 
 (1) 

 
Precision (2) evaluates the classifier’s ability to avoid false positives. It focuses on the proportion of 

the true positive predictions relative to all positive predictions made by the model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 (2) 

 
Recall (Sensitivity) (3) assesses the classifier’s ability to identify true positives. It is the proportion of 

true positive predictions relative to all actual positives in the dataset.  
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 (3) 

 
F1 score (4) balances precision and recall, since it is the harmonic mean of precision and recall.  It is 

particularly useful when there is an imbalance between precision and recall, as it provides a single 
measure of performance that considers both false positives and false negatives. 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 (4) 

 
The Matthews Correlation Coefficient (MCC) (5) is a robust metric that can handle imbalanced 

datasets, with values ranging from -1 to +1, where +1 indicates perfect predictions and -1 shows total 
disagreement. The value 0 signifies a random prediction.  
Due to its robustness and interpretability, it can be applied in different classification problems.  

𝑀𝐶𝐶 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ∗ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 − 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ∗ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

√𝐴 ∗ 𝐵 ∗ 𝐶 ∗ 𝐷 
 (5) 

𝐴 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝐵 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝐶 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝐷 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 
Area Under the Curve (AUC) measures the classifier’s ability to distinguish between classes across 

different thresholds. AUC ranges from 0.5 (random guessing) to 1.0 (perfect classification). A summary 
of all parameters involved in this study is shown in Table 1, together with their corresponding 
abbreviations 
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Table 1.  
Summary of all the parameters of this study with their abbreviations. 

Datasets 

Name Abbreviation  

Dataset 1 D1 

• Total 252 images 

•  84 per cell 

• Size 1024*1280 

• Training 168 images 

• Testing 84 images 
 

Dataset 2 D2 

• Total 4740 images 

• 1580 per cell 

• Size 256 x 256 

• Training: 3156 images 

• Testing: 1584 images 
Butterworth filters 

Butterworth filter 1 BW1 

• Lowpass: 30 

• Highpass:120 

• Order: 4 

Butterworth filter 2 BW2 

• Lowpass: 30 

• Highpass:150 

• Order: 4 

Butterworth filter 3 BW3 

• Lowpass: 50 

• Highpass:150 

• Order: 4 

Feature extraction 

Name Abbreviation  
Inception V3 IV3 Nr of features: 2048 

SqueezeNet SN Nr of features: 1000 
VGG-16 VGG Nr of features: 4096 

Classifiers 
K-Nearest 
Neighbor 

 
KNN 

Decision Tree 
 

DT 

Random 
Forest 

 
RF 

AdaBoost 
 
 

AB 

Neural 
Network 

 
NN 

Naïve Bayes 
 
 

NB 

Evaluation Metrics 

Precision 
 
 

PREC 

Classification 
Accuracy 

 
CA 

Recall 
 
 

REC 

Area Under 
Curve 

 
AUC 

F1 Score 
 
 

F1 

Mathew correlation 
coefficient 

 
MCC 

 

4. Results 
4.1. Dataset 1 Results 

Below are shown the overall performance comparison of three feature extraction architectures—
Inception V3 (IV3), SqueezeNet (SN), and VGG-16 —combined with six classifiers (KNN, Decision 
Tree, Random Forest, AdaBoost, Neural Network, and Naïve Bayes) for the classification of three 
different cell types (A549, Balb 3T3, THP1). The results reported in Table 2 are obtained when all 
features are used in the training and testing. Each classifier-architecture pair is evaluated using multiple 
performance metrics, including AUC, CA, F1 score, Precision (PREC), Recall (REC), and MCC, under 
three validation schemes (5-fold, 10-fold cross-validation) and an independent test set. This detailed 
evaluation enables a robust assessment of both the discriminative power of extracted features and the 
generalization ability of the employed classifiers. High AUC values—often converging to or exceeding 
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0.99—suggest excellent discrimination capabilities, while consistently high CA, F1, PREC, REC, and 
MCC scores across training and test conditions indicate stable and reliable predictive performance. 
 
Table 2.  
Comparative performance of six classifiers using three feature extraction architectures for three cell type classification for D1. 

Training Process 

  Classifier 
/Model 

AUC CA F1 PREC REC MCC 

5F 10F 5F 10F 5F 10F 5F 10F 5F 10F 5F 10F 

KNN 

IV3 0.994 0.999 0.97 0.976 0.97 0.976 0.97 0.977 0.97 0.976 0.955 0.964 

SN 0.999 0.999 0.964 0.976 0.964 0.976 0.965 0.977 0.964 0.976 0.947 0.965 

VGG 0.999 0.999 0.976 0.976 0.976 0.976 0.977 0.977 0.976 0.976 0.964 0.964 

DT 

IV3 0.928 0.908 0.881 0.863 0.881 0.863 0.883 0.864 0.881 0.863 0.822 0.795 

SN 0.94 0.93 0.905 0.887 0.905 0.887 0.907 0.888 0.905 0.887 0.858 0.83 
VGG 0.928 0.934 0.887 0.893 0.887 0.893 0.888 0.894 0.887 0.893 0.831 0.84 

RF 
IV3 0.992 0.997 0.946 0.964 0.947 0.964 0.952 0.965 0.946 0.964 0.922 0.947 
SN 0.998 0.997 0.964 0.964 0.964 0.964 0.965 0.964 0.964 0.965 0.947 0.947 

VGG 0.994 0.996 0.946 0.958 0.946 0.958 0.946 0.958 0.946 0.958 0.92 0.938 

AB 
  

IV3 0.924 0.902 0.899 0.869 0.899 0.869 0.9 0.871 0.899 0.869 0.848 0.804 

SN 0.933 0.906 0.911 0.875 0.911 0.876 0.911 0.878 0.911 0.875 0.866 0.813 

VGG 0.906 0.915 0.875 0.887 0.876 0.887 0.878 0.889 0.875 0.887 0.813 0.831 

NN 

IV3 0.997 0.996 0.958 0.964 0.958 0.964 0.958 0.965 0.958 0.964 0.938 0.947 

SN 1 1 0.982 0.994 0.982 0.994 0.982 0.994 0.982 0.994 0.973 0.991 
VGG 0.996 0.996 0.964 0.964 0.964 0.964 0.965 0.965 0.964 0.964 0.947 0.947 

NB 
IV3 0.992 0.994 0.964 0.964 0.964 0.964 0.964 0.964 0.964 0.964 0.946 0.946 
SN 0.989 0.992 0.952 0.964 0.953 0.965 0.956 0.968 0.952 0.964 0.93 0.948 

VGG - - 0.905 0.917 0.906 0.917 0.912 0.921 0.905 0.917 0.86 0.877 
Testing process 

 Classifier 
/Model 

AUC CA F1 PREC REC MCC 

KNN 
IV3 0.99 0.94 0.94 0.949 0.94 0.916 
SN 0.989 0.964 0.965 0.968 0.964 0.948 

VGG 0.991 0.976 0.976 0.978 0.976 0.965 

DT 
IV3 0.866 0.821 0.821 0.835 0.821 0.739 
SN 0.918 0.881 0.878 0.905 0.881 0.834 

VGG 0.962 0.929 0.93 0.935 0.929 0.895 

RF 

IV3 0.997 0.893 0.89 0.919 0.893 0.854 

SN 0.98 0.845 0.848 0.894 0.845 0.791 
VGG 0.999 0.976 0.976 0.978 0.976 0.965 

AB 
  

IV3 0.875 0.833 0.833 0.843 0.833 0.755 
SN 0.955 0.94 0.94 0.943 0.94 0.912 

VGG 0.973 0.964 0.964 0.966 0.964 0.947 

NN 
IV3 0.999 0.988 0.988 0.989 0.988 0.982 
SN 1 1 1 1 1 1 

VGG 1 0.988 0 0.989988 0.988 0.982 

NB 

IV3 0.989 0.964 0.964 0.968 0.964 0.948 

SN 0.983 0.929 0.929 0.936 0.929 0.896 
VGG - 0.976 0.976 0.978 0.976 0.965 

 
Comparing the fivefold and ten fold cross validation splitting shows the stability of the classifier 

when trained and tested. Generally, similar values in 5F and 10F suggest that the model is robust to 
how the training data is partitioned. Analysis of the results reveals that certain classifier and feature 
extraction combinations outperform others. Neural Networks demonstrate near-perfect classification 
performance when paired with SqueezeNet or VGG features, consistently achieving high AUC, CA, and 
F1 scores and MCC values reflecting nearly flawless predictions (See Figure 4). Similarly, Random 
Forest and KNN models, when trained on either IV3 (see Figure, 5,6) or VGG-derived features, exhibit 
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notably high overall performance metrics, indicating that well-engineered deep representations can 
effectively separate cell type classes.  
 

 
Figure 4.  
Accuracy metrics of 5-fold, 10-fold splitting and testing for all classifiers when VGG 16 architecture is used. 

 
In contrast, Decision Trees and AdaBoost, while still producing good results, generally lag behind 

the top-performing models, suggesting a lesser capacity to fully leverage the richness of deep features or 
to establish complex decision boundaries required for optimal differentiation among cell types.  

 

 
Figure 5.  
Accuracy metrics of 5-fold, 10-fold splitting and testing for all classifiers when Inception V3 architecture is used 
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These findings suggest that the most optimal configurations are those that pair robust feature 
extraction architectures with more sophisticated classification algorithms. In particular, SqueezeNet- 
and VGG-based feature vectors combined with Neural Networks emerged as the top-tier solutions, 
delivering superior AUC, CA, and F1 metrics, as well as stable MCC values across cross-validation and 
independent testing. Such combinations not only highlight the importance of selecting advanced, high-
quality feature representations but also underscore the value of choosing classifiers capable of 
capitalizing on these complex feature sets. In practice, these insights would guide researchers toward 
leveraging deep-learning-derived features in conjunction with neural network models to achieve 
maximal accuracy, reliability, and scalability in high-throughput cellular classification tasks. 
 

 
Figure 6.  
Accuracy metrics of 5-fold, 10-fold splitting and testing for all classifiers when SqueezeNet architecture is used 

 
Similar to the previous one, the same experiment is repeated by changing the number of features in 

the training and testing process. Only 10 most relevant features are selected using Information Gain, 
and the evaluation metrics are shown in Table 3.  
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Table 3.  
Comparative performance of six classifiers using 10 relevant features obtained using dimensionality reduction from 
Information Gain for D1. 

Training Process 

  Classifier 
/Model 

AUC CA F1 PREC REC MCC 

  5F 10F 5F 10F 5F 10F 5F 10F 5F 10F 5F 10F 

KNN 
IV3 0.994 0.994 0.97 0.958 0.97 0.959 0.971 0.96 0.97 0.958 0.956 0.938 
SN 0.99 0.99 0.97 0.964 0.97 0.964 0.971 0.964 0.97 0.964 0.955 0.946 

VGG 0.991 0.999 0.946 0.964 0.946 0.964 0.947 0.964 0.946 0.964 0.92 0.946 

DT 
IV3 0.933 0.934 0.911 0.923 0.91 0.923 0.91 0.923 0.911 0.923 0.866 0.884 
SN 0.948 0.955 0.911 0.935 0.911 0.935 0.911 0.935 0.911 0.935 0.866 0.902 

VGG 0.926 0.925 0.893 0.869 0.892 0.868 0.892 0.868 0.893 0.869 0.839 0.804 

RF 
IV3 0.933 0.993 0.911 0.958 0.91 0.959 0.91 0.961 0.911 0.958 0.866 0.938 
SN 0.989 0.993 0.929 0.964 0.929 0.964 0.93 0.965 0.929 0.964 0.893 0.947 

VGG 0.992 0.99 0.946 0.935 0.947 0.934 0.947 0.934 0.946 0.935 0.92 0.902 

AB 
IV3 0.951 0.946 0.935 0.929 0.935 0.929 0.935 0.929 0.935 0.929 0.902 0.893 
SN 0.929 0.951 0.905 0.935 0.904 0.935 0.905 0.936 0.905 0.935 0.857 0.902 

VGG 0.924 0.92 0.899 0.893 0.898 0.893 0.898 0.893 0.899 0.893 0.849 0.84 

NN 

IV3 0.998 0.998 0.958 0.958 0.958 0.958 0.959 0.959 0.958 0.958 0.938 0.938 
SN 0.998 0.998 0.97 0.976 0.97 0.976 0.971 0.976 0.97 0.976 0.956 0.964 

VGG 0.997 0.998 0.958 0.958 0.958 0.958 0.959 0.96 0.958 0.958 0.938 0.938 

NB 
IV3 0.996 0.997 0.94 0.946 0.941 0.947 0.941 0.947 0.94 0.946 0.911 0.92 
SN 0.997 0.997 0.97 0.97 0.97 0.97 0.97 0.971 0.97 0.97 0.955 0.956 

VGG 0.996 0.996 0.94 0.952 0.941 0.953 0.944 0.956 0.94 0.952 0.912 0.93 
Testing Process 
 Classifier 
/Model 

AUC CA F1 PREC REC MCC 

KNN 
IV3 0.981 0.952 0.952 0.958 0.952 0.932 
SN 1 0.976 0.976 0.978 0.976 0.965 

VGG 1 0.976 0.976 0.978 0.976 0.965 

DT 
IV3 0.962 0.94 0.939 0.947 0.94 0.915 
SN 0.898 0.869 0.871 0.875 0.869 0.805 
VGG 0.959 0.929 0.928 0.933 0.929 0.895 

RF 
IV3 0.996 0.905 0.902 0.922 0.905 0.868 
SN 0.999 0.976 0.976 0.978 0.976 0.965 
VGG 0.999 0.952 0.953 0.958 0.952 0.931 

AB 
IV3 0.955 0.94 0.94 0.949 0.94 0.916 
SN 0.902 0.869 0.87 0.877 0.869 0.806 
VGG 0.955 0.94 0.941 0.949 0.94 0.914 

NN 
IV3 0.999 0.964 0.964 0.966 0.964 0.947 
SN 0.998 0.976 0.976 0.976 0.976 0.964 
VGG 1 1 1 1 1 1 

NB 

IV3 0.994 0.917 0.915 0.922 0.917 0.879 

SN 0.995 0.976 0.976 0.978 0.976 0.965 
VGG 1 1 1 1 1 1 

 
There is a constant superiority of 10-fold over 5-fold cross validation splitting schemes for all the 

classification accuracy metrics, i.e. for a total of 18 different combinations of three architectures and six 
classifiers. The highest difference between the two splitting schemes is observed for the MCC metrics 
with an average of 1% higher. A distinct higher classification accuracy is observed for SqueezeNet 
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architecture for most of the accuracy metrics and the highest values are observed when SqueezeNet is 
paired with Random Forest and AdaBoost classifiers. AUC, CA and F1 scores are generally high with 
small variations among all the architecture-classifier pairs. Precision exhibits some occasional dips from 
generally high values, and this could be attributed to the prioritization of recall over precision by some 
models. The relative dependence of recall over the precision dependence on the chosen architecture has 
been reported earlier in the literature [74] and our results here indicate a similar pattern. MCC shows a 
higher variation among the used metrics and this is an example of a metric that is more sensitive to the 
choice of the feature extractor. Neural network is observed to be the best classifier across all the feature 
extraction architectures used, indicating as an appropriate choice for this dataset and possibly for other 
datasets too.  

 
4.2. Dataset 2 Results 

In the Table 4 below are reported the classification performance based on six evaluation metrics as 
all features extracted from the three architectures were used when D2 is used instead of D1. Here the 
size of the images is 256 x 256 pixels and the total number of the images that are used is 3156 images 
with 66% of the images used for training and 34% used for testing. In terms, the average of all the 
metrics, VGG16 performs better (0.8969) than Inception V3 (0.8675) and SqueezeNet (0.8618) 
architectures and this could be because of its deeper architecture that can facilitate identification of key 
features that can provide higher classification accuracy. Its superiority is obvious particularly in the 
testing phase. Comparing the classifiers, a superiority of Neural Networks is observed (average of 
0.9421 across all metrics) and this could be due to its characteristic of identifying complex patterns. 
Neural Network classifier is followed by KNN (0.9148), Random Forest (0.8936), AdaBoost (0.9107), 
Naïve Bayes (0.8326) and AdaBoost (0.8260). The observation on the underperformance of Decision 
Tree classifiers is a confirmation of prior results that are related with its difficulty in high dimensional 
data [75]. VGG16 architecture performs best when Neural Networks, KNN, and Random Forest 
classifiers are used with the cell images dataset. The metrics with higher reported values are AUC, CA 
and F1 scores. Inception V3 performs well when Neural Networks and KNN are used as classifiers. CA 
and REC for Inception V3 results are slightly lower than VGG16. SqueezeNet underperforms when 
compared to the other two architectures, particularly with Naïve Bayes and Decision Trees. Classifiers 
compare differently when combined with different architectures across different performance evaluation 
metrics. In terms of AUC, CA and F1 score, Neural Networks paired with the VGG16 constitute a good 
combination. Considering that KNN is a very simple classifier it still performs well when feature vectors 
extracted from VGG16 are used for classification. AdaBoost and Naïve Bayes perform poorly especially 
when combined with SqueezeNet.  
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Table 4.  
Comparative performance of six classifiers using three feature extraction architectures for three cell type classification for D2. 

Training Process 

  Classifier 
/Model 

AUC CA F1 PREC REC MCC 

  5F 10F 5F 10F 5F 10F 5F 10F 5F 10F 5F 10F 

KNN 
IV3 0.99 0.991 0.943 0.946 0.942 0.946 0.943 0.947 0.943 0.946 0.914 0.92 
SN 0.982 0.981 0.916 0.92 0.915 0.92 0.915 0.92 0.916 0.92 0.874 0.881 

VGG 0.989 0.99 0.947 0.948 0.947 0.948 0.948 0.948 0.947 0.948 0.921 0.922 

DT 

IV3 0.899 0.906 0.879 0.89 0.879 0.89 0.879 0.89 0.879 0.89 0.818 0.835 

SN 0.875 0.878 0.863 0.861 0.863 0.861 0.863 0.861 0.863 0.861 0.795 0.792 
VGG 0.91 0.921 0.905 0.907 0.904 0.907 0.904 0.907 0.905 0.907 0.857 0.861 

RF 
IV3 0.982 0.983 0.914 0.92 0.915 0.92 0.915 0.921 0.914 0.92 0.872 0.88 
SN 0.976 0.979 0.902 0.908 0.902 0.909 0.903 0.909 0.902 0.908 0.853 0.863 

VGG 0.987 0.987 0.934 0.932 0.934 0.932 0.935 0.933 0.934 0.932 0.902 0.899 

AB 
IV3 0.897 0.901 0.862 0.869 0.862 0.868 0.862 0.868 0.862 0.869 0.793 0.803 
SN 0.874 0.879 0.831 0.838 0.831 0.839 0.831 0.839 0.831 0.838 0.747 0.758 

VGG 0.927 0.923 0.903 0.897 0.903 0.897 0.903 0.897 0.903 0.897 0.855 0.846 

NN 

IV3 0.998 0.997 0.974 0.978 0.974 0.978 0.974 0.978 0.974 0.978 0.962 0.967 

SN 0.996 0.996 0.964 0.965 0.964 0.965 0.964 0.965 0.964 0.965 0.945 0.948 
VGG 0.998 0.998 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.957 0.957 

NB 
IV3 0.959 0.959 0.876 0.876 0.876 0.876 0.877 0.877 0.876 0.876 0.814 0.814 
SN 0.918 0.918 0.797 0.795 0.795 0.794 0.796 0.794 0.797 0.795 0.696 0.694 

VGG - - 0.887 0.886 0.886 0.885 0.886 0.885 0.887 0.886 0.83 0.829 

Testing Process 
 Classifier 
/Model 

AUC CA F1 PREC REC MCC 

KNN 

IV3 0.936 0.831 0.833 0.854 0.831 0.756 

SN 0.954 0.867 0.868 0.876 0.867 0.803 
VGG 0.957 0.878 0.879 0.882 0.878 0.817 

DT 
IV3 0.808 0.708 0.714 0.775 0.708 0.584 
SN 0.825 0.794 0.796 0.81 0.794 0.697 

VGG 0.856 0.833 0.836 0.846 0.833 0.753 

RF 

IV3 0.923 0.751 0.758 0.808 0.751 0.647 

SN 0.96 0.847 0.85 0.865 0.847 0.777 
VGG 0.965 0.87 0.871 0.877 0.87 0.807 

AB 

IV3 0.789 0.719 0.726 0.763 0.719 0.591 

SN 0.818 0.758 0.76 0.778 0.758 0.643 
VGG 0.849 0.799 0.804 0.824 0.799 0.706 

NN 
IV3 0.981 0.867 0.87 0.89 0.867 0.809 
SN 0.975 0.843 0.847 0.878 0.843 0.778 

VGG 0.981 0.895 0.896 0.903 0.895 0.844 

NB 

IV3 0.888 0.748 0.753 0.786 0.748 0.636 

SN 0.936 0.821 0.819 0.827 0.821 0.736 
VGG - 0.818 0.819 0.82 0.818 0.727 

 
The reported results in Table 5 show the classification accuracies reported by six different metrics 

for two different splitting schemes and testing phase, 18 combinations of 3 feature extractor 
architectures with six classifiers. Here we use only 10 features that are extracted using Information 
Gain. 
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Table 5.  
Comparative performance of six classifiers using 10 relevant features obtained using dimensionality reduction from 
Information Gain for D2. 

Training process 

 Classifier 
/Model 

AUC CA F1 PREC REC MCC 

  5F 10F 5F 10F 5F 10F 5F 10F 5F 10F 5F 10F 

KNN 

IV3 0.953 0.953 0.868 0.864 0.868 0.864 0.868 0.865 0.868 0.864 0.802 0.797 

SN 0.918 0.918 0.799 0.802 0.798 0.801 0.798 0.801 0.799 0.802 0.699 0.703 
VGG 0.953 0.953 0.872 0.875 0.872 0.875 0.872 0.875 0.872 0.875 0.808 0.813 

DT 
IV3 0.848 0.844 0.842 0.835 0.841 0.834 0.841 0.833 0.842 0.835 0.763 0.752 
SN 0.788 0.802 0.753 0.757 0.752 0.757 0.752 0.757 0.753 0.757 0.629 0.635 

VGG 0.864 0.877 0.838 0.851 0.838 0.851 0.837 0.85 0.838 0.851 0.758 0.777 

RF 

IV3 0.963 0.963 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.808 0.808 

SN 0.929 0.923 0.809 0.804 0.809 0.804 0.809 0.804 0.809 0.804 0.714 0.705 

VGG 0.962 0.963 0.879 0.883 0.879 0.883 0.879 0.883 0.879 0.883 0.819 0.824 

AB 

IV3 0.873 0.875 0.831 0.834 0.83 0.833 0.83 0.833 0.831 0.834 0.746 0.751 

SN 0.817 0.808 0.756 0.744 0.756 0.744 0.756 0.744 0.756 0.744 0.634 0.616 
VGG 0.876 0.879 0.834 0.838 0.834 0.838 0.834 0.839 0.834 0.838 0.752 0.758 

NN 
IV3 0.974 0.974 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.826 0.826 
SN 0.947 0.948 0.833 0.836 0.833 0.836 0.833 0.836 0.833 0.836 0.75 0.754 

VGG 0.975 0.975 0.898 0.901 0.897 0.9 0.898 0.901 0.898 0.901 0.847 0.851 

NB 

IV3 0.958 0.958 0.855 0.856 0.856 0.856 0.857 0.857 0.855 0.856 0.783 0.783 

SN 0.919 0.919 0.786 0.785 0.786 0.784 0.786 0.785 0.786 0.785 0.681 0.678 

VGG 0.946 0.946 0.829 0.831 0.828 0.83 0.828 0.831 0.829 0.831 0.745 0.748 
Testing process 

 Classifier 
/Model 

AUC CA F1 PREC REC MCC 

KNN 
IV3 0.876 0.741 0.749 0.79 0.741 0.627 
SN 0.878 0.741 0.742 0.753 0.741 0.617 

VGG 0.931 0.834 0.835 0.837 0.834 0.751 

DT 

IV3 0.765 0.71 0.719 0.762 0.71 0.579 

SN 0.741 0.687 0.686 0.7 0.687 0.537 
VGG 0.852 0.818 0.819 0.821 0.818 0.727 

RF 
IV3 0.903 0.741 0.749 0.791 0.741 0.627 
SN 0.891 0.737 0.738 0.76 0.737 0.616 

VGG 0.943 0.838 0.839 0.843 0.838 0.757 

AB 
IV3 0.778 0.704 0.713 0.754 0.704 0.627 
SN 0.77 0.693 0.695 0.706 0.693 0.544 

VGG 0.86 0.813 0.815 0.818 0.813 0.72 

NN 

IV3 0.926 0.769 0.776 0.817 0.769 0.67 

SN 0.921 0.77 0.77 0.788 0.77 0.664 
VGG 0.946 0.839 0.841 0.847 0.839 0.76 

NB 
IV3 0.91 0.755 0.761 0.777 0.755 0.637 
SN 0.902 0.752 0.753 0.764 0.752 0.632 

VGG 0.942 0.83 0.829 0.83 0.83 0.745 

 
When a limited number of features are used for classification, a decrease in the accuracy is observed 

as reported by all the metrics and this is expected. There is no significant difference in the training 
between the 5-fold and the 10-fold splitting schemes with the latter exhibiting slightly higher accuracy 
for all six metrics thus indicating a more favourable setting. But the 5-fold splitting scheme exhibits a 
smaller variation across all 18 combinations of architectures and classifiers and also a lower CoV (0.2-
0.3) thus indicating a more favourable scheme in terms of robustness. The training accuracies vary from 
97.5% (AUC), to ~90% (CA, F1 score, PREC and REC), and to the lowest value of 85.1% (MCC). The 
accuracy deteriorates by 7% to 19% when classification based on the use of all features compared to the 
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use of only 10 features. The largest decrease is observed for the MCC and the lowest is observed for the 
AUC metric. VGG16 achieves a higher accuracy when compared to the other two architectures for all 
the six classifiers used. The highest classification accuracies are found when VGG16 is paired with 
Neural Network classifier (AUC=94.60%), with Random Forest (AUC=94.3%) and with Naïve Bayes 
(AUC=94.2%). The average evaluation metrics for 18 architecture-classifier pairs for the testing phase 
are: AUC=87.42%, CA=76.51%, F1=76.83%, Prec=78.66%, REC=76.51% and MCC=65.76%.  

The order of the evaluation metrics for the testing phase are ranked from the highest to the lowest 
as AUC (95.6%), PREC (84.7%), F1 score (84.1%), RECl and CA (83.9%) and MCC (76%).  
 

5. Discussion 
To compare the accuracy metrics results and to evaluate their robustness, coefficient of variation 

(CoV) is also reported as a percentage of the ratio of standard deviation over the mean of the metrics (6). 
This is a coefficient that is reported in the literature as an important metric to quantitatively compare 
different experiments [76, 77].  

𝐶𝑜𝑉 = (𝜎/µ) ∗ 100  (6) 
The analysis is performed in Table 4, due to the high amount of training and testing sets present in 

D2 compared to D1. All features extracted by the architectures are used in order to have a better view 
of the architecture-classifier relation.  CoV is minimal for each classifier when that classifier is paired 
with VGG16, and the lowest CoV is when Neural Network is paired with VGG16 (4.54%). VGG16 has 
the lowest CoV (4.44%), followed by Inception V3 (6.04%), and then SqueezeNet architecture (6.35%). 
When evaluating the performance of the testing of the classification for all the six accuracy evaluation 
metrics for 18 architecture-classifier pairs, generally the same patterns are observed. The highest 
testing accuracy is observed for the AUC metrics corresponding to VGG16 - Neural Network pair 
(AUC=98.10%) and the lowest testing accuracy is observed for the Inception V3 - AdaBoost pair 
(AUC=78.90%). For each classifier, its testing accuracy is highest when combined with VGG16 
followed by its combination with SqueezeNet and it is lowest when combined with Inception V3, except 
when paired with Neural Network. The order of the testing accuracy for Neural Network as a classifier 
is in the decreasing order from 90.23% when combined with VGG16, 88.07% when combined with 
Inception V3 and 86.07% when combined with SqueezeNet. The careful analysis of the testing accuracy 
is very important as this really indicates whether the trained model can generalize on unseen data and 
whether it is useful in practical deployment (See Figure 7).  
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Figure 7.  
AUC metric for 5-fold, 10-fold and testing for all the combinations of architecture and classifiers. 

 
The testing accuracy as evaluated by six metrics exhibits its lowest CoV (4.47%) when Decision 

Tree classifier is used and this indicates the most robust classifier for different splitting schemes (5 fold 
and 10 fold), and also for testing over all metrics. The next lowest (best) CoV (4.54%) corresponds to 
the VGG16 architecture with Neural Network classifier. The constant superiority of one filter over the 
other for all six classifiers while using IV3 was an interesting observation that needs further analysis. 
This indicates a dependence of the classification on the cut off frequency of the filter that would be 
related to the features that can be preserved when a higher cut off frequency is used.  
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Figure 8.  
Representation of the effect of the Butterworth filters on three cell types. 

 
Subsequently, Butterworth filters (BW1, BW2, BW3) with different parameters (30/120/4, 

30/150/4, 50/150/4) were applied to the image dataset, and the filtered images were used for training 
following the same procedure as for the unfiltered images (See Figure 8). The maximum accuracy metric 
(Max), its average, standard deviation (Stdev) and CoV are shown in Table 6 below (shown for AUC) 
corresponding to all 18 different combinations of architectures and classifiers.  
 
Table 6. 
Comparison of statistical measurements for AUC of 18 different classifier/architecture combination for filtered and unfiltered 
data. 

 BW1 BW2 BW3 Unfiltered 
Max. 98.00 97.80 97.20 98.10 

Average 90.91 91.16 90.89 90.45 
St. dev. 6.56 6.25 6.55 6.58 

CoV. 7.21 6.85 7.20 7.28 

 
A higher accuracy is observed for images that are filtered with all three filters when compared to 

the unfiltered dataset. BW2 exhibits a smaller variance across all 18 combinations and therefore a 
smaller CoV. 
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Figure 9. 
AUC metric for three Butterworth filter and unfiltered dataset for all architecture-classifier pairs. 

 
Significant differences in accuracy were observed among the filtered images, when comparing the 

results of 18 different classifier-architecture combination, given in Table 7. A graphical representation is 
also shown in Figure 9. Specifically, the accuracy obtained with filter BW1 was significantly higher than 
with filter BW3 (p = 0.04) when Decision Tree classifiers were combined with all three architectures. 
Furthermore, when the Decision Tree classifier was paired with VGG16, the accuracies for all three 
filters exceeded those of the unfiltered dataset. This indicates not only a significant difference between 
the same filter class but also a complete superiority of this filter class when compared to the unfiltered 
dataset.  
 
Table 7.  
Statistical measurements of 18 different classifier/architecture combination. 

 BW1 BW2 BW3 Unfiltered 
KNN_IV3 0.932 0.94 0.935 0.936 

KNN_SN 0.951 0.95 0.957 0.954 
KNN_VGG16 0.957 0.956 0.956 0.957 

DT_IV3 0.793 0.794 0.784 0.808 

DT_SN 0.825 0.841 0.811 0.825 
DT_VGG16 0.899 0.885 0.88 0.856 

RF_IV3 0.92 0.919 0.924 0.923 
RF_SN 0.951 0.951 0.95 0.96 

RF_VGG16 0.967 0.967 0.967 0.965 
AB_IV3 0.778 0.786 0.785 0.789 

AB_SN 0.84 0.834 0.835 0.818 
AB_VGG16 0.841 0.874 0.87 0.849 

NN_IV3 0.973 0.978 0.965 0.981 
NN_SN 0.976 0.975 0.972 0.975 

NN_VGG16 0.98 0.977 0.968 0.981 

NB_IV3 0.896 0.899 0.903 0.888 
NB_SN 0.94 0.938 0.944 0.936 

NB_VGG16 0.945 0.945 0.955 0.88 
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A significant difference is observed for the accuracies when BW1 and BW2 is compared (p=0.045) 
when IV3 is used with all six classifiers. No statistically significant differences were observed between 
the three Butterworth filters and the unfiltered dataset when SqueezeNet and VGG16 architectures are 
used. 
 

6. Conclusions 
Cell imaging is inherently a challenging problem, and this becomes more obvious in the case of 

microfluidics settings. One of the important experiments is both intraclass and interclass cell image 
classification. Here we systematically investigated the most optimal combination of architecture (among 
Inception V3, SqueezeNet, and VGG16) and classifier (from KNN, Decision Tree, Random Forest, 
AdaBoost, Neural Network, and Naïve Bayes) that can be used for robust supervised classification of 
different cells from unstained brightfield images. We observe a common superiority of the VGG16 
architecture over the other two in the classification of the cell images and this indicates the benefit of a 
deeper architecture that would allow the extraction of more complex features from challenging texture 
and morphological structures. Among the classifiers, the Neural Network consistently achieved the 
highest classification metrics when paired with VGG16, demonstrating its ability to effectively utilize 
the rich feature representations extracted by the architecture. While other classifiers such as Random 
Forest and KNN performed well in specific scenarios, they were unable to match the flexibility and 
accuracy of Neural Networks across the different experimental conditions. 

The use of Butterworth filters with several parameters as a preprocessing step proved to be useful 
in improving the classification accuracy and in indicating the importance of the parameters in 
differentiating the filters of the same family. The significant improvement in the accuracy as a function 
of the filter parameters indicates the importance of the cut off values and the order of the filter. 
Optimization of these two parameters critically balances the preservation of the features and the noise 
reduction. This underscores the importance of optimizing preprocessing techniques to the specific 
characteristics of the dataset to maximize model performance. 

The results presented here are important for microscopy image analysis and particularly cell 
imaging. Fields including biomaterial risk assessment and drug delivery are distinct areas that require 
this type of analysis. The ability to accurately classify cellular responses to external stimuli, such as 
nano- and microstructured surfaces, is critical for evaluating cytotoxicity and understanding the 
interactions between cells and engineered materials. Future work could extend by evaluating 
modification in parameters of the architectures (for example pooling functions etc) and classifiers, 
including the analysis of broader set of filter parameters. 
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