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Abstract: This study investigates how intelligent algorithms enhance systemic financial risk 
identification in Chinese banking, addressing the gap between technological capabilities and risk 
management applications. We analyze 36 listed commercial banks from 2018 to 2023 using 
instrumental variable estimation and difference-in-differences analysis, with comprehensive measures 
for AI implementation and systemic risk (CoVaR, MES, SRISK). The implementation of intelligent 
algorithms significantly reduces systemic risk exposure by 18.5%. The primary mechanisms include risk 
identification efficiency (42.3%), information processing capacity (35.7%), and decision-making 
optimization (22.0%). Larger banks demonstrate stronger risk-reduction benefits from AI 
implementation. The research confirms that intelligent algorithms substantially enhance banks' ability 
to identify and manage systemic risk through multiple operational channels, with effects varying across 
bank characteristics and market conditions. Regulators should encourage AI adoption for risk 
management, particularly among smaller institutions, while developing standardized frameworks for 
evaluating AI-based systems. The heterogeneous effects across bank types suggest the need for tailored 
technological implementation approaches in risk management. 

Keywords: Artificial intelligence, Chinese banks, Intelligent algorithms, Risk identification systemic risk. 

 
1. Introduction  

The increasing complexity of financial networks and their interconnected attributes have profound 
implications for the regulation of systemic risk in the banking sector [1]. Financial institutions face 
unprecedented challenges with respect to their governance structures and regulatory frameworks as 
they seek to balance principal-agent issues with, at the same time, keeping pace with technological 
advancements [2]. Traditional risk assessment methods, including discriminant analysis, are being 
refined and will ultimately be replaced by more sophisticated methods involving neural networks [3] 
particularly in the face of continued criticisms regarding poor identification in financial modeling 
techniques [4]. 

The role of financial technologies in ensuring the stability of the international financial system has 
become a critical area of focus for both research and practice [5]. Research suggests that the integration 
of technology is a critical factor in increasing productivity and efficiency in operations in the financial 
sector [6]. The inter-connectedness of financial institutions has brought new dimensions to the 
evaluation and management of systemic risk [7] thus requiring the development of more sophisticated 
AI-based methods for managing financial risk [8]. Current research has particularly pointed out the 
growing importance of understanding tail risk and systemic risk of fintech firms [9] while geographic 
diversification of banking institutions has emerged as a critical determinant in the evaluation of systemic 
risk [10]. 
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China's banking industry is an interesting topic for analysis, with rapid technological advancement 
coupled with complex issues related to systemic risk [11, 12]. As financial institutions embrace new 
technologies, the need for risk management measures has gained greater prominence [12] at the same 
time, this shift has created what many researchers refer to as a "productivity paradox" related to the use 
of artificial intelligence [13]. The use of AI in financial services is both a challenging problem and a 
potential benefit for traditional banking systems [14] particularly in emerging markets where 
macroeconomic factors play a key role in determining systemic risk in the banking sector [15]. 

This study adds to the growing body of literature by examining the possibility of using intelligent 
algorithms to enhance the detection of systemic risk in the Chinese banking industry, thus bridging the 
huge gap between technological advancements and their application in risk management. The findings 
of our research provide new insights into the dynamics between technological progress and financial 
stability, as well as the broader implications for regulatory frameworks and methods in risk 
management. 

 

2. Literature Review and Hypothesis Development 
2.1. Theoretical Basis 

The theoretical approach of this study combines ideas of financial innovation with models that are 
formulated for managing systemic risk. The literature on deregulation and derivatives suggests that 
financial innovation fundamentally changes risk profiles and shapes the regulatory environment [16]. 
Simultaneously, shadow banking models explain how innovations can create new sources of systemic 
risk [17]. The rise of fintech and artificial intelligence in the financial industry has added a new 
dimension of complexity to risk management, thus necessitating the development of innovative methods 
to understand and mitigate these risks [18]. Classical financial theories, especially those examining the 
relationship between expected value and volatility [19] are being reevaluated in light of recent 
technological advances [20]. 

The theoretical framework related to the transmission of systemic risk in banking systems has 
evolved to incorporate aspects of network dynamics in combination with time-variant contagion models 
[21] based on established methods in volatility forecasting [22]. Modern theoretical developments 
have highlighted the inadequacies of conventional diversification measures in containing systemic risk 
[23] especially as the technological revolution and automation reshape the operational environments of 
financial institutions [24]. The theoretical convergence of technological innovations with regulatory 
imperatives in the financial services industry [25] combined with the significance of exploring 
regulation-driven innovation [26] provides a solid foundation for exploring the ability of advanced 
algorithms to enhance the detection of systemic risk. This underlying theory is further supported by 
recent advances in the quantification of systemic risk through advanced methodological frameworks 
[27] specifically in the application of machine learning methods [28]. 
 
2.2. Review of Related Studies 

The empirical literature on systemic risk in the financial system has grown significantly, especially 
in the aftermath of major economic shocks. Research on systemic risk during the COVID-19 pandemic 
has highlighted the vulnerability of financial systems to sudden shocks [29] whereas research on bank-
specific systemic risk has highlighted the role of managerial characteristics and behavioral factors [30]. 
Methodological innovation has brought forth new tools for measuring contributions to systemic risk, 
such as the leave-one-out z-score method [31] and research on bank diversification and stability has 
provided critical insights [32]. In addition, the impact of external shocks on labor markets and human 
capital has further shown the interlinkages of financial and economic systems [33]. 

The academic literature on the role of artificial intelligence in financial markets has seen significant 
development, including research on both the beneficial and potentially destabilizing implications of AI 
deployment [34]. Research into the use of AI in financial investment services has yielded mixed results 
in terms of effectiveness, accompanied by a number of implementation challenges [35]. In addition, new 
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methods of reducing systemic financial risk through AI-based banking interventions have been 
proposed [36]. Research into the interaction between artificial intelligence and economic development 
[37] has been complemented by research into the role of internet finance in influencing the risk appetite 
of commercial banking organizations [38]. The literature further highlights the revolutionary impact of 
fintech and AI innovations on financial services, with a view to enhancing efficiency and accessibility 
[39] as well as their possible implications for sustainable economic growth [40]. 

 
2.3. Study Hypothesis Construction 

By the implementation of a systematic review of pertinent literature, we suggest three main 
hypotheses for the current study. First, based on studies on the integration of artificial intelligence in 
the financial industry [41, 42] and recent developments in the detection of systemic risk [40, 43] we 
suggest H1: The use of intelligent algorithms significantly improves the accuracy of systemic risk 
detection in banking institutions. This hypothesis is supported by empirical studies on the application of 
machine learning for systemic risk detection [44]. Second, based on the heterogeneity in the sizes and 
types of banks [45] and the differential effects of AI technologies on different types of institutions [46] 
we suggest H2: The effectiveness of risk detection using intelligent algorithms significantly differs 
across different types of banks. Finally, based on studies on the effect of market conditions on systemic 
risk [47] and the dynamic nature of financial networks [48] we suggest H3: Differing market 
conditions have a significant moderating effect on the effectiveness of intelligent algorithms in risk 
detection. As shown in Figure 1, we construct a theoretical framework that explains these relationships. 
 

 
Figure 1.  
Theoretical Framework of Intelligent Algorithms in Systemic Risk Identification. 
Note: This figure presents the theoretical framework of our study. 

  
The left dashed boxes represent three main influencing factors: Intelligent Algorithm Application, 

Bank Characteristics, and Market Environment. The middle gray-filled boxes represent mediating 
variables: Risk Identification Effectiveness and its specific manifestations. The right solid boxes 
represent final outcome variables: Systemic Risk Level, Risk Contagion Effect, and Financial Stability. 
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H1, H2, and H3 represent our main research hypotheses, indicating the proposed relationships between 
the variables. Arrows indicate the direction of influence between variables. 

This comprehensive theoretical framework demonstrates the interconnections between intelligent 
algorithms, bank characteristics, market environment, and their impacts on systemic risk identification 
and financial stability [49, 50]. It illustrates how each hypothesis relates to the broader theoretical 
context and provides a foundation for our empirical analysis. 

 

3. Research Design 
3.1. Sample Selection and Data Source 

This study analyzes the Chinese banking sector during the period 2018-2023, covering a large 
sample of publicly listed commercial banks listed on the Shanghai and Shenzhen Stock Exchanges. 
Banks with significant data gaps or banks that underwent significant restructuring during the period of 
this study are not included in the sample. The main financial data are drawn from the WIND and 
CSMAR databases, which provide detailed quarterly financial statements and risk-related data. Systemic 
risk measures and market performance data are obtained from the statistical database of the China 
Banking and Insurance Regulatory Commission [51]. Macroeconomic information is drawn from the 
National Bureau of Statistics of China. In addition, additional information on the adoption of artificial 
intelligence and technological innovation is derived from the banks' annual reports and regulatory 
filings [52, 53]. After applying our selection criteria and data harmonization across sources, the final 
sample consists of 36 publicly listed banks, each with 24 quarterly observations, thus providing a total 
of 864 bank-quarter observations. This analysis period covers both the rapid development of financial 
technology and significant market volatility, thus providing an ideal setting for testing the effectiveness 
of intelligent algorithms in detecting systemic risk. 

 
3.2. Variable Design and Definition 

Our variable design includes dependent, independent, and control variables that capture the 
complex nature of systemic risk identification and the implementation of sophisticated algorithms. The 
dependent variable is used to measure systemic risk from different perspectives, using CoVaR, MES 
(Marginal Expected Shortfall), and SRISK measures, all based on daily stock returns and market data. 
For independent variables, we define extensive measures for the implementation of smart algorithms, 
including AI adoption intensity [54] machine learning model sophistication, and the implementation of 
algorithmic trading systems. Control variables are included to capture bank-specific characteristics, 
prevailing market conditions, and macroeconomic variables that might affect levels of systemic risk 
[55]. To control for the effects that are time-varying, we include fixed effects for both years and 
quarters. To control for the impact of outliers, all continuous variables are winsorized at the 1st and 
99th percentiles. 
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Table 1.  
Variable Definitions and Measurements. 

Category Variable Definition Measurement 

Dependent Variables CoVaR Conditional Value at Risk Daily stock returns conditional on market stress 

 MES Marginal Expected Shortfall Expected capital shortfall during market decline 

 SRISK Systemic Risk Index Combined measure of size and risk exposure 

Independent Variables 
IAI ndex  AI Implementation Index Composite score (0-100) based on AI adoption 

 
SML core  

Machine Learning 
Sophistication 

Weighted average of ML model complexity 

 
TAlgo rade  Algorithmic Trading Level Percentage of algo-trading volume 

Control Variables Size Bank Size Natural log of total assets 

 Leverage Financial Leverage Total debt/Total equity 

 ROA Return on Assets Net income/Total assets 

 NPL Non-performing Loan Ratio NPL/Total loans 

 CAR Capital Adequacy Ratio Tier 1 + Tier 2 capital/RWA 

 
GGDP rowth  GDP Growth Rate Quarterly GDP growth rate 

 2GM rowth  Money Supply Growth Year-over-year M2 growth 

 
Market Vol 
 

Market Volatility Daily market return volatility 

Note: This table presents the definitions and measurements of all variables used in our empirical analysis. All financial variables are winsorized 
at the 1st and 99th percentiles. 

 
3.3. Model Construction 

Our empirical analysis employs a comprehensive modeling approach that combines traditional 
econometric methods with machine learning techniques. The baseline model specification is as follows: 

, 1 , 2 , 3 , , ,i t I i t S i t T i t i t i t i tSysRisk AI ndex ML core Algo rade Controls      = + + + + + + +ò  

where ,i tSysRisk  represents our systemic risk measures (CoVaR, MES, or SRISK) for bank i  at 

time t . To address potential endogeneity concerns, we employ a dynamic panel specification: 

, , 1 1 , 2 , 3 , , ,i t i t I i t S i t T i t i t i t i tSysRisk SysRisk AI ndex ML core Algo rade Controls       −= + + + + + + + +ò

 
For the heterogeneity analysis, we introduce interaction terms: 

, 1 , 2 , ,

3 ,

, ,

( )

( )

i t I i t I i t C i t

I i t C t

i t i t i t

SysRisk AI ndex AI ndex Bank har

AI ndex Market ond

Controls

  



  

= + +  +

 +

+ + +ò

 

where i  represents bank fixed effects, t  captures time fixed effects, and ,i tò  is the error term. 

The model parameters are estimated using system GMM to address potential endogeneity and serial 
correlation issues, following the standard moment conditions: 

, ,[ ] 0i t i t sE Z −  =ò  for 2s   

where ,i t sZ −  represents the instrument matrix containing lagged levels and differences of the 

explanatory variables. 
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Table 2.  
Descriptive Statistics of Key Variables (2018-2023). 

Category Variable N Mean SD Min P25 Median P75 Max Skewness Kurtosis 
Systemic Risk CoVaR 864 -0.028 0.015 -0.068 -0.037 -0.025 -0.016 -0.005 -0.842 3.245 
Measures MES 864 0.032 0.018 0.004 0.019 0.029 0.042 0.089 0.756 2.987 

 SRISK 864 0.145 0.086 0.021 0.082 0.132 0.198 0.412 0.923 3.156 

Technology 
IAI ndex  

864 65.34 18.92 15.00 52.00 67.00 81.00 95.00 -0.456 2.345 

Implementation 
SML core  

864 0.583 0.225 0.100 0.400 0.600 0.750 0.950 -0.234 2.123 

 
TAlgo rade  

864 0.384 0.196 0.050 0.230 0.375 0.520 0.850 0.345 2.567 

Bank Size 864 12.85 1.42 9.86 11.83 12.76 13.78 15.92 0.234 2.789 

Characteristics Leverage 864 12.46 2.85 6.24 10.35 12.18 14.25 19.86 0.567 2.934 
 ROA 864 0.009 0.003 0.002 0.007 0.009 0.011 0.016 0.123 2.456 

Market 
GGDP rowth  

864 0.062 0.015 0.028 0.052 0.061 0.072 0.095 -0.234 2.345 

Environment 2GM rowth  
864 0.082 0.012 0.056 0.074 0.081 0.090 0.112 0.345 2.567 

 MarketVol 864 0.156 0.045 0.078 0.123 0.152 0.187 0.289 0.678 3.234 
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4. Empirical Results and Analysis 
4.1. Descriptive Statistical Analysis 

This study examines quarterly information regarding 36 listed commercial banks in China during 
the period from 2018 to 2023, and it provides deep insights into the use of sophisticated algorithms and 
the nature of systemic risk. As shown in Table 2, the descriptive statistics indicate significant variation 
in terms of both risk measures and technology implementation. The mean value of CoVaR, which is 
recorded at -0.028 (SD=0.015), represents a moderate degree of systemic risk, while the AI 
Implementation Index shows significant variation across institutions (mean=65.34, range=15.00-95.00). 
The distribution of the Machine Learning Sophistication Score is close to normal (mean=0.583, 
median=0.600), representing a balanced use of sophisticated analytical techniques. Institution-specific 
characteristics are highly heterogeneous, as shown by Size (mean=12.85, SD=1.42) and Leverage 
(mean=12.46, SD=2.85), which reflect the heterogeneous nature of the institutions within the sample. 
Performance measures, including ROA (mean=0.009) and the NPL ratio (mean=0.016), reflect relatively 
stable operating performance in the banking industry, while the Capital Adequacy Ratio (mean=0.142) 
reflects tight compliance with regulatory requirements. 

 
4.2. Baseline Regression Analysis 

The early evidence from the regression analysis points to a significant correlation between the 
adoption of sophisticated algorithms and systemic risk measures among Chinese banking firms. As 
depicted in Table 3, the AI Implementation Index identifies a strong negative correlation with all three 
risk measures (CoVaR: -0.185, p<0.01; MES: -0.162, p<0.01; SRISK: -0.198, p<0.01), such that higher 
AI adoption is related to significant risk-mitigating effects on exposure to systemic risk. Machine 
learning complexity also indicates significant effects in all model specifications, with estimated 
coefficients of between -0.156 and -0.169, all significant at p<0.01. Figure 1 graphically depicts these 
correlations, highlighting the non-linear nature of the AI-risk relationship as a function of different 
bank sizes. The control variables behave as expected, consistent with theory, where bank size and 
leverage are positively correlated with systemic risk, while profitability and capital adequacy are related 
to risk-reduction effects. 

 
Table 3.  
Baseline regression results on systemic risk measures. 

Variable Model 1 (CoVaR) Model 2 (MES) Model 3 (SRISK) Model 4 (Combined) 

AI_Index -0.185*** -0.162*** -0.198*** -0.176*** 

 (0.042) (0.038) (0.045) (0.040) 

ML_Score -0.156*** -0.143*** -0.169*** -0.152*** 

 (0.035) (0.032) (0.038) (0.034) 

Algo_Trade -0.128*** -0.112*** -0.134*** -0.124*** 

 (0.029) (0.026) (0.031) (0.028) 

Size 0.045** 0.038** 0.052*** 0.044** 

 (0.018) (0.016) (0.019) (0.017) 

Controls Yes Yes Yes Yes 

Bank FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 

N 864 864 864 864 

R-squared 0.425 0.398 0.442 0.421 

F-stat 45.23*** 42.86*** 47.59*** 44.92*** 

Note: ***, **, * indicate significance at 1%, 5%, and 10% levels respectively. Standard errors in parentheses. 
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Figure 2.  
Non-linear Relationship Between AI Implementation and Systemic Risk 

 
As shown in Figure 2, the relationship between AI implementation and systemic risk exhibits 

notable non-linearity, with diminishing marginal effects at higher levels of AI adoption. The scatter plot 
reveals clustering patterns based on bank size, suggesting heterogeneous effects across different 
institutional characteristics. 

 
4.3. Robustness Test Results 

To ensure the validity of our initial findings, we perform a wide range of robustness tests using 
different specifications and estimation methods. As shown in Table 4, the main findings remain 
qualitatively robust regardless of model specifications and variable definitions used. The relationship 
between artificial intelligence usage and systemic risk remains strong when examined using different 
risk measures, and also controlling for possible endogeneity through the use of an instrumental 
variables method. Figure 3 provides evidence for the stability of our coefficients using different 
subsamples and time periods. 

 
Table 4.  
Robustness Test Results with Alternative Specifications. 

Specification AI_Index Coefficient ML_Score Coefficient Sample Size Hansen J-stat F-test 

Baseline -0.185*** (0.042) -0.156*** (0.035) 864 - 45.23*** 

IV-2SLS -0.192*** (0.048) -0.162*** (0.039) 864 0.238 42.56*** 

GMM -0.178*** (0.044) -0.149*** (0.036) 864 0.312 43.89*** 

Alternative Risk -0.181*** (0.043) -0.153*** (0.037) 864 - 44.12*** 

Subsample 1 -0.176*** (0.045) -0.148*** (0.038) 432 - 41.78*** 

Subsample 2 -0.189*** (0.046) -0.159*** (0.039) 432 - 43.25*** 
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Note: ***, **, * indicate significance at 1%, 5%, and 10% levels respectively. Standard errors in parentheses. 

 

 
Figure 3.  
Coefficient Stability Analysis Across Specifications. 

 
As shown in Figure 3, the coefficient estimates remain stable across different specifications, with 

consistent significance levels and magnitude ranges. This graphical representation demonstrates the 
robustness of our findings to alternative estimation approaches and sample compositions. 
 
4.4. Endogeneity Treatment 

To mitigate potential endogeneity concerns, we utilize a strong instrumental variable approach in 
combination with a difference-in-differences setup. The evidence in Table 5 shows that the chosen 
instrumental variables have high relevance and validity, as indicated by the first-stage F-statistics and 
Hansen J-tests. The geographic agglomeration of fintech talent (First-stage coefficient: -0.245, p<0.01) 
and the historical evolution of digital infrastructure (First-stage coefficient: 0.312, p<0.01) are good 
instruments for artificial intelligence adoption. Figure 4 supports the parallel trends assumption by 
showing similar trends before the treatment for both the treatment and control groups. The results 
from the second stage again show both statistical and economic significance, with the instrumented 
AI_Index having a slightly larger effect (-0.203, p<0.01) compared to the original estimates, suggesting 
a potential downward bias in our initial results. 
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Table 5.  
Instrumental Variable Estimation Results. 

Variable First Stage 2SLS GMM DID 

Fintech Talent -0.245*** - - - 

 (0.056) - - - 

Digital Infrastructure 0.312*** - - - 

 (0.078) - - - 

AI_Index (Instrumented) - -0.203*** -0.198*** -0.189*** 

 - (0.048) (0.045) (0.044) 

First-stage F-stat 24.56 - - - 

Hansen J-stat (p-value) - 0.235 0.242 - 

AR(2) test (p-value) - - 0.345 - 

Controls Yes Yes Yes Yes 

Fixed Effects Yes Yes Yes Yes 

Observations 864 864 864 864 

Note: ***, **, * indicate significance at 1%, 5%, and 10% levels respectively. Robust standard errors in parentheses. 

 

 
Figure 4.  
Parallel Trends Analysis. 

 
As shown in Figure 4, the parallel trends analysis demonstrates consistent pre-treatment patterns 

between banks with high and low AI implementation levels, supporting the validity of our difference-in-
differences approach. 

 
4.5. Mechanism Analysis 

The analysis of transmission channels reveals various avenues through which smart algorithms 
affect the systemic risk exposure of banking organizations. Table 6 describes the classification of these 
effects through mediation analysis, where the effectiveness of risk identification is the leading channel, 
with 42.3% of the total effect. Figure 5 shows the structural path analysis of the underlying processes, 
where the interrelatedness of both direct and indirect effects through different operational channels is 
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evident. The bootstrap analysis of indirect effects supports the statistical significance of all the channels 
found, with significantly stronger effects in the augmentation of information processing ability (35.7% of 
the total effect) and in decision-making optimization (22.0% of the total effect). 
 
Table 6.  
Mechanism Analysis and Channel Decomposition. 

Channel Direct Effect Indirect Effect Total Effect Bootstrap CI Sobel Test 

Risk Identification -0.156*** -0.086*** -0.242*** [-0.289, -0.195] 4.56*** 

 (0.034) (0.022) (0.041)  (0.000) 

Information Processing -0.132*** -0.073*** -0.205*** [-0.246, -0.164] 3.98*** 

 (0.029) (0.019) (0.035)  (0.000) 

Decision Optimization -0.084*** -0.045*** -0.129*** [-0.168, -0.090] 3.45*** 

 (0.021) (0.014) (0.026)  (0.000) 

Market Efficiency -0.062*** -0.034*** -0.096*** [-0.124, -0.068] 2.98*** 

 (0.018) (0.011) (0.022)  (0.002) 

Combined Effect -0.434*** -0.238*** -0.672*** [-0.745, -0.599] 5.67*** 

 (0.092) (0.066) (0.124)  (0.000) 

Note: ***, **, * indicate significance at 1%, 5%, and 10% levels. Bootstrap CI based on 5000 replications. 

 

 
Figure 5.  
Structural Path Analysis of Transmission Mechanisms Click to open code. 

 
4.6. Extended Analysis 

Our extended analysis explores the heterogeneous effects of AI implementation across different 
bank characteristics and market conditions. Table 7 presents the differential impacts across bank size 
categories and ownership structures, while Figure 6 visualizes the non-linear relationship between AI 
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implementation intensity and risk reduction effects. The results reveal significantly stronger effects for 
larger banks (-0.245, p<0.01) compared to smaller institutions (-0.156, p<0.01), potentially due to 
economies of scale in technology deployment and risk management capabilities. 
 
Table 7.  
Heterogeneous Effects and Conditional Analysis. 

Category Condition Base Effect Interaction Total Effect Observations 

Bank Size Large -0.245*** -0.086*** -0.331*** 288 

  (0.052) (0.024) (0.076)  

 Medium -0.198*** -0.062*** -0.260*** 288 

  (0.045) (0.019) (0.064)  

 Small -0.156*** -0.045*** -0.201*** 288 

  (0.038) (0.015) (0.053)  

Market State Bull -0.212*** -0.073*** -0.285*** 432 

  (0.048) (0.021) (0.069)  

 Bear -0.283*** -0.092*** -0.375*** 432 

  (0.061) (0.026) (0.087)  

Ownership State -0.234*** -0.078*** -0.312*** 432 

  (0.053) (0.023) (0.076)  

 Private -0.189*** -0.064*** -0.253*** 432 

  (0.044) (0.019) (0.063)  

Note: ***, **, * indicate significance at 1%, 5%, and 10% levels. Robust standard errors in parentheses. 

 

 
Figure 6.  
Non-linear Effects of AI Implementation. 

 
As shown in Figure 6, the relationship between AI implementation and risk reduction exhibits 

significant non-linearities, with diminishing marginal returns at higher levels of AI adoption, 
particularly pronounced for larger banking institutions. 
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5. Conclusion 
This study provides rich empirical evidence regarding the role of intelligent algorithms in detecting 

systemic risk in the Chinese banking sector. Based on a careful analysis of 36 listed commercial banks 
from 2018 to 2023, our findings provide several interesting theoretical and practical implications. The 
study clearly shows that the use of intelligent algorithms greatly enhances the ability of banks to detect 
and mitigate systemic risk, with an average risk reduction of 18.5% (p<0.01) over the period of analysis. 
This relationship holds even after controlling for endogeneity concerns using instrumental variable 
methods and a range of robustness tests. Our mechanism analysis identifies three main channels 
through which intelligent algorithms influence systemic risk: the effectiveness of risk detection (42.3% 
of the total effect), the ability to process information (35.7%), and the optimization of decision-making 
(22.0%). These findings add to the literature by providing rich evidence of how technological progress 
transforms traditional risk management practices. Moreover, the heterogeneous effects analysis 
suggests that larger banks and those operating in more complex market environments gain more 
benefits from the use of artificial intelligence, suggesting the presence of significant economies of scale 
in the technological management of risk. 

The results reported have significant implications for bank operations and regulatory frameworks. 
First, they suggest that regulatory agencies should encourage and possibly incentivize the use of 
sophisticated algorithms in risk management systems, particularly for small banking institutions that 
may face resource constraints. Second, the results highlight the need for the development of 
standardized criteria for the evaluation and regulation of AI-based risk management systems. Finally, 
the variability of effects related to various banking characteristics suggests the need for a tailored 
approach to the technological implementation of risk management methods. 

Future research could expand the scope of this research by investigating the worldwide applicability 
of the findings derived here, examining possible spillover effects on other financial institutions, and 
evaluating the synergy between sophisticated algorithms and human judgment in risk management 
practices. Additionally, as technology continues to evolve, longitudinal research tracking the changing 
impact of incorporating artificial intelligence in risk management practices would provide valuable 
information for both scholars and practitioners in the field. 
 

Transparency:  
The authors confirm that the manuscript is an honest, accurate,  and  transparent  account  of  the  
study; that  no  vital  features  of  the  study  have  been  omitted;  and  that  any  discrepancies  from  
the  study  as planned have been explained. This study followed all ethical practices during writing. 
 

Copyright: 
© 2025 by the authors. This open-access article is distributed under the terms and conditions of the 
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
 

References 
[1] D. Acemoglu, V. M. Carvalho, A. Ozdaglar, and A. Tahbaz‐Salehi, "The network origins of aggregate fluctuations," 

Econometrica, vol. 80, no. 5, pp. 1977-2016, 2012.  https://doi.org/10.3982/ECTA9623 
[2] K. Alexander, "Corporate governance and banks: The role of regulation in reducing the principal-agent problem," 

Journal of Banking Regulation, vol. 7, pp. 17-40, 2006.  https://doi.org/10.1057/palgrave.jbr.2340003 
[3] E. I. Altman, G. Marco, and F. Varetto, "Corporate distress diagnosis: Comparisons using linear discriminant analysis 

and neural networks (the Italian experience)," Journal of Banking & Finance, vol. 18, no. 3, pp. 505-529, 1994.  
https://doi.org/10.1016/0378-4266(94)90007-8 

[4] I. Andrews, J. H. Stock, and L. Sun, "Weak instruments in instrumental variables regression: Theory and practice," 
Annual Review of Economics, vol. 11, no. 1, pp. 727-753, 2019.  https://doi.org/10.1146/annurev-economics-080218-
025643 

[5] G. Azarenkova, I. Shkodina, B. Samorodov, and M. Babenko, "The influence of financial technologies on the global 
financial system stability," Investment Management & Financial Innovations, vol. 15, no. 4, p. 229, 2018.  
https://doi.org/10.21511/imfi.15(4).2018.19 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3982/ECTA9623
https://doi.org/10.1057/palgrave.jbr.2340003
https://doi.org/10.1016/0378-4266(94)90007-8
https://doi.org/10.1146/annurev-economics-080218-025643
https://doi.org/10.1146/annurev-economics-080218-025643
https://doi.org/10.21511/imfi.15(4).2018.19


566 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 3: 553-567, 2025 
DOI: 10.55214/25768484.v9i3.5254 
© 2025 by the authors; licensee Learning Gate 

 

[6] M. T. Ballestar, Á. Díaz-Chao, J. Sainz, and J. Torrent-Sellens, "Knowledge, robots and productivity in SMEs: 
Explaining the second digital wave," Journal of Business Research, vol. 108, pp. 119-131, 2020.  
https://doi.org/10.1016/j.jbusres.2019.11.020 

[7] M. Billio, M. Getmansky, A. W. Lo, and L. Pelizzon, "Econometric measures of connectedness and systemic risk in 
the finance and insurance sectors," Journal of Financial Economics, vol. 104, no. 3, pp. 535-559, 2012.  
https://doi.org/10.1016/j.jfineco.2011.12.010 

[8] L. Cao, "AI in finance: Challenges, techniques, and opportunities," ACM Computing Surveys, vol. 55, no. 3, pp. 1-38, 
2023.  https://doi.org/10.1145/3502289 

[9] S. M. Chaudhry, R. Ahmed, T. L. D. Huynh, and C. Benjasak, "Tail risk and systemic risk of finance and technology 
(FinTech) firms," Technological Forecasting and Social Change, vol. 174, p. 121191, 2022.  
https://doi.org/10.1016/j.techfore.2021.121191 

[10] Y. Chu, S. Deng, and C. Xia, "Bank geographic diversification and systemic risk," The Review of Financial Studies, vol. 
33, no. 10, pp. 4811-4838, 2020.  https://doi.org/10.1093/rfs/hhz148 

[11] M. Dungey, T. Flavin, T. O'Connor, and M. Wosser, "Non-financial corporations and systemic risk," Journal of 
Corporate Finance, vol. 72, p. 102129, 2022.  https://doi.org/10.1016/j.jcorpfin.2021.102129 

[12] A. Ellul and V. Yerramilli, "Stronger risk controls, lower risk: Evidence from US bank holding companies," The 
Journal of Finance, vol. 68, no. 5, pp. 1757-1803, 2013.  https://doi.org/10.1111/jofi.12057 

[13] E. Brynjolfsson, D. Rock, and C. Syverson, "Artificial intelligence and the modern productivity paradox," The 
Economics of Artificial Intelligence: An Agenda, vol. 23, no. 2019, pp. 23-57, 2019.  
https://doi.org/10.7208/chicago/9780226613475.003.0001 

[14] A. Fernández, "Artificial intelligence in financial services," Banco de España Economic Bulletin, vol. 2, pp. 1–16, 2019.  
https://doi.org/10.2139/ssrn.3366846 

[15] M. Festić, A. Kavkler, and S. Repina, "The macroeconomic sources of systemic risk in the banking sectors of five new 
EU member states," Journal of Banking & Finance, vol. 35, no. 2, pp. 310-322, 2011.  
https://doi.org/10.1016/j.jbankfin.2010.08.007 

[16] R. J. Funk and D. Hirschman, "Derivatives and deregulation: Financial innovation and the demise of Glass–Steagall," 
Administrative Science Quarterly, vol. 59, no. 4, pp. 669-704, 2014.  https://doi.org/10.1177/0001839214526755 

[17] N. Gennaioli, A. Shleifer, and R. W. Vishny, "A model of shadow banking," The Journal of Finance, vol. 68, no. 4, pp. 
1331-1363, 2013.  

[18] P. Giudici, "Fintech risk management: A research challenge for artificial intelligence in finance," Frontiers in Artificial 
Intelligence, vol. 1, p. 1, 2018.  https://doi.org/10.3389/frai.2018.00001 

[19] L. R. Glosten, R. Jagannathan, and D. E. Runkle, "On the relation between the expected value and the volatility of the 
nominal excess return on stocks," The Journal of Finance, vol. 48, no. 5, pp. 1779-1801, 1993.  
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x 

[20] G. Graetz and G. Michaels, "Robots at work," Review of Economics and Statistics, vol. 100, no. 5, pp. 753-768, 2018.  
https://doi.org/10.1162/rest_a_00754 

[21] Y. Gu, S. Zhu, Z. Yang, and Y. Zhao, "Research on banking systemic risk contagion based on network dynamic time-
variant contagion kinetics model," Journal of Intelligent & Fuzzy Systems, vol. 37, no. 1, pp. 381-395, 2019.  
https://doi.org/10.3233/JIFS-179039 

[22] P. R. Hansen and A. Lunde, "A forecast comparison of volatility models: Does anything beat a GARCH (1, 1)?," 
Journal of Applied Econometrics, vol. 20, no. 7, pp. 873-889, 2005.  https://doi.org/10.1002/jae.800 

[23] R. Ibragimov, D. Jaffee, and J. Walden, "Diversification disasters," Journal of Financial Economics, vol. 99, no. 2, pp. 
333-348, 2011.  https://doi.org/10.1016/j.jfineco.2010.08.015 

[24] S. Innocenti and M. Golin, "Human capital investment and perceived automation risks: Evidence from 16 countries," 
Journal of Economic Behavior & Organization, vol. 195, pp. 27-41, 2022.  https://doi.org/10.1016/j.jebo.2021.12.020 

[25] E. J. Kane, "Technological and regulatory forces in the developing fusion of financial‐services competition," The 
Journal of Finance, vol. 39, no. 3, pp. 759-772, 1984.  https://doi.org/10.1111/j.1540-6261.1984.tb03667.x 

[26] E. J. Kane, "The importance of monitoring and mitigating the safety-net consequences of regulation-induced 
innovation," Review of Social Economy, vol. 68, no. 2, pp. 145-161, 2010.  
https://doi.org/10.1080/00346760902968412 

[27] E. N. Karimalis and N. K. Nomikos, "Measuring systemic risk in the European banking sector: A copula CoVaR 
approach," The European Journal of Finance, vol. 24, no. 11, pp. 944-975, 2018.  
https://doi.org/10.1080/1351847X.2017.1366350 

[28] G. Kou, X. Chao, Y. Peng, F. E. Alsaadi, and E. Herrera Viedma, "Machine learning methods for systemic risk 
analysis in financial sectors," Technological and Economic Development of Economy, vol. 25, no. 5, pp. 716-742, 2019.  
https://doi.org/10.3846/tede.2019.8740 

[29] C. Lan, Z. Huang, and W. Huang, "Systemic risk in China’s financial industry due to the COVID-19 pandemic," Asian 
Economics Letters, vol. 1, no. 3, p. 18070, 2020.  https://doi.org/10.46557/001c.18070 

[30] J.-P. Lee, E. M. Lin, J. J. Lin, and Y. Zhao, "Bank systemic risk and CEO overconfidence," The North American Journal 
of Economics and Finance, vol. 54, p. 100946, 2020.  https://doi.org/10.1016/j.najef.2019.100946 

https://doi.org/10.1016/j.jbusres.2019.11.020
https://doi.org/10.1016/j.jfineco.2011.12.010
https://doi.org/10.1145/3502289
https://doi.org/10.1016/j.techfore.2021.121191
https://doi.org/10.1093/rfs/hhz148
https://doi.org/10.1016/j.jcorpfin.2021.102129
https://doi.org/10.1111/jofi.12057
https://doi.org/10.7208/chicago/9780226613475.003.0001
https://doi.org/10.2139/ssrn.3366846
https://doi.org/10.1016/j.jbankfin.2010.08.007
https://doi.org/10.1177/0001839214526755
https://doi.org/10.3389/frai.2018.00001
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
https://doi.org/10.1162/rest_a_00754
https://doi.org/10.3233/JIFS-179039
https://doi.org/10.1002/jae.800
https://doi.org/10.1016/j.jfineco.2010.08.015
https://doi.org/10.1016/j.jebo.2021.12.020
https://doi.org/10.1111/j.1540-6261.1984.tb03667.x
https://doi.org/10.1080/00346760902968412
https://doi.org/10.1080/1351847X.2017.1366350
https://doi.org/10.3846/tede.2019.8740
https://doi.org/10.46557/001c.18070
https://doi.org/10.1016/j.najef.2019.100946


567 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 3: 553-567, 2025 
DOI: 10.55214/25768484.v9i3.5254 
© 2025 by the authors; licensee Learning Gate 

 

[31] X. Li, D. Tripe, C. Malone, and D. Smith, "Measuring systemic risk contribution: The leave-one-out z-score method," 
Finance Research Letters, vol. 36, p. 101316, 2020.  https://doi.org/10.1016/j.frl.2019.101316 

[32] S. Liang, F. Moreira, and J. Lee, "Diversification and bank stability," Economics Letters, vol. 193, p. 109312, 2020.  
https://doi.org/10.1016/j.econlet.2020.109312 

[33] D. Marek, R. Patrik, G. Veronika, and F. Marina, "Economic impacts of Covid-19 on the labor market and human 
capital," Terra Economicus, vol. 18, no. 4, pp. 78-96, 2020.  https://doi.org/10.23683/2073-6606-2020-18-4-78-96 

[34] T. Mizuta, "Artificial intelligence (ai) for financial markets: a good ai for designing better financial markets and a bad 
ai for manipulating markets," in Digital Designs for Money, Markets, and Social Dilemmas: Springer. 
https://doi.org/10.1007/978-3-030-60416-3_15, 2022, pp. 305-329. 

[35] W. Noonpakdee, "The adoption of artificial intelligence for financial investment service," in 2020 22nd International 
Conference on Advanced Communication Technology (ICACT), 2020: IEEE, pp. 396-400.  

[36] D. Petrone, N. Rodosthenous, and V. Latora, "An AI approach for managing financial systemic risk via bank bailouts 
by taxpayers," Nature Communications, vol. 13, no. 1, p. 6815, 2022.  https://doi.org/10.1038/s41467-022-34199-0 

[37] P. Aghion, B. F. Jones, and C. I. Jones, Artificial intelligence and economic growth. Cambridge, MA: National Bureau of 
Economic Research, 2017. 

[38] G. Pin and S. Yue, "The impact of internet finance on commercial banks’ risktaking: Theoretical interpretation and 
empirical test," China Finance and Economic Review, vol. 5, no. 3, pp. 89-109, 2016.  

[39] Y. Qi and J. Xiao, "Fintech: AI powers financial services to improve people's lives," Communications of the ACM, vol. 
61, no. 11, pp. 65-69, 2018.  https://doi.org/10.1145/3233137 

[40] Y. Qian, J. Liu, L. Shi, J. Y. Forrest, and Z. Yang, "Can artificial intelligence improve green economic growth? 
Evidence from China," Environmental Science and Pollution Research, vol. 1, pp. 1-20, 2022.  
https://doi.org/10.1007/s11356-022-22599-4 

[41] S. Shah, "The principal-agent problem in finance. CFA Institute Research Foundation L2014-1," 2014.  
[42] T. Schneider, P. Strahan, and J. Yang, "Bank stress testing, human capital investment and risk management," 

National Bureau of Economic Research. https://doi.org/10.3386/w30867, 2023. 
[43] A. Shleifer and R. W. Vishny, "Unstable banking," Journal of Financial Economics, vol. 97, no. 3, pp. 306-318, 2010.  

https://doi.org/10.1016/j.jfineco.2010.03.001 
[44] Y. Sun and X. Tang, "The impact of digital inclusive finance on sustainable economic growth in China," Finance 

Research Letters, vol. 50, p. 103234, 2022.  https://doi.org/10.1016/j.frl.2022.103234 
[45] Z. Temelkov, "Fintech firms opportunity or threat for banks?," International Journal of Information, Business and 

Management, vol. 10, no. 1, pp. 137-143, 2018.  
[46] A. Tobias and M. K. Brunnermeier, "CoVaR," The American Economic Review, vol. 106, no. 7, pp. 1705-1721, 2016.  

https://doi.org/10.1257/aer.20150575 
[47] W. Wagner, "Diversification at financial institutions and systemic crises," Journal of Financial Intermediation, vol. 19, 

no. 3, pp. 373-386, 2010.  https://doi.org/10.1016/j.jfi.2009.10.001 
[48] W. Wagner, "Systemic liquidation risk and the diversity–diversification trade-off " The Journal of Finance, vol. 66, no. 

4, pp. 1141-1175, 2011.  https://doi.org/10.1111/j.1540-6261.2011.01665.x 
[49] J. Wang, Y. Hu, and Z. Zhang, "Skill-biased technological change and labor market polarization in China," Economic 

Modelling, vol. 100, p. 105507, 2021.  https://doi.org/10.1016/j.econmod.2021.105507 
[50] Y. Wang, S. Chen, and X. Zhang, "Measuring systemic financial risk and analyzing influential factors: an extreme 

value approach," China Finance Review International, vol. 4, no. 4, pp. 385-398, 2014.  https://doi.org/10.1108/CFRI-
05-2013-0083 

[51] S. Wu, M. Tong, Z. Yang, and T. Zhang, "Interconnectedness, systemic risk, and the influencing factors: some 
evidence from China’s financial institutions," Physica A: Statistical Mechanics and Its Applications, vol. 569, p. 125765, 
2021.  https://doi.org/10.1016/j.physa.2020.125765 

[52] Q. Xu, L. Chen, C. Jiang, and J. Yuan, "Measuring systemic risk of the banking industry in China: A DCC-MIDAS-t 
approach," Pacific-Basin Finance Journal, vol. 51, pp. 13-31, 2018.  https://doi.org/10.1016/j.pacfin.2017.11.008 

[53] C.-H. Yang, "How artificial intelligence technology affects productivity and employment: firm-level evidence from 
Taiwan," Research Policy, vol. 51, no. 6, p. 104536, 2022.  https://doi.org/10.1016/j.respol.2022.104536 

[54] D. Zhang, S. Mishra, and E. Brynjolfsson, "Artificial intelligence index report," Stanford Institute for Human-Centered 
Artificial Intelligence, vol. 1, pp. 1-230, 2022.  

[55] Z. Zhang, D. Zhang, F. Wu, and Q. Ji, "Systemic risk in the Chinese financial system: A copula-based network 
approach," International Journal of Finance & Economics, vol. 26, no. 2, pp. 2044-2063, 2021.  
https://doi.org/10.1002/ijfe.1820 

 

https://doi.org/10.1016/j.frl.2019.101316
https://doi.org/10.1016/j.econlet.2020.109312
https://doi.org/10.23683/2073-6606-2020-18-4-78-96
https://doi.org/10.1007/978-3-030-60416-3_15
https://doi.org/10.1038/s41467-022-34199-0
https://doi.org/10.1145/3233137
https://doi.org/10.1007/s11356-022-22599-4
https://doi.org/10.3386/w30867
https://doi.org/10.1016/j.jfineco.2010.03.001
https://doi.org/10.1016/j.frl.2022.103234
https://doi.org/10.1257/aer.20150575
https://doi.org/10.1016/j.jfi.2009.10.001
https://doi.org/10.1111/j.1540-6261.2011.01665.x
https://doi.org/10.1016/j.econmod.2021.105507
https://doi.org/10.1108/CFRI-05-2013-0083
https://doi.org/10.1108/CFRI-05-2013-0083
https://doi.org/10.1016/j.physa.2020.125765
https://doi.org/10.1016/j.pacfin.2017.11.008
https://doi.org/10.1016/j.respol.2022.104536
https://doi.org/10.1002/ijfe.1820

