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Abstract: FFace detection is a crucial aspect of computer vision, often challenged by factors such as
varying scales, occlusions, and diverse facial features. In this study, we introduce GCSEM-YOLO, an
innovative real-time face detection method built upon the YOLOvVS architecture. This approach
incorporates a novel feature extraction module (GCSEM) alongside a specialized small-scale detection
head, designed to capture pixel information across multiple levels and enhance the receptive field,
thereby improving the accuracy of small face detection. To address the imbalance between easy and
difficult samples, we employ an adaptive anchor box filtering algorithm coupled with the new WIloUv3
loss function. Experimental results demonstrate that GCSEM-YOLO achieves outstanding efficiency on
the WIDER FACE validation datasets.
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1. Introduction

Face detection serves as a crucial foundation for enabling a variety of facial analysis tasks,
particularly facial alignment Meher, et al. [17] attribute analysis Dey, et al. [2] recognition Du, et al.
[8] and verification [47]. The performance of facial detectors has significantly increased with the recent
explosion in deep convolutional neural networks. Several deep learning-based high-performance facial
detection systems have been put forth. These algorithms often fall into two major categories. One
category is cascaded neural nets. The face detection technique detects coarse to fine faces by using
cascaded neural networks as classifiers and feature extractors. Although cascade detectors have achieved
notable success, they also present certain limitations, including challenges in training and slower
detection speeds. Another class of algorithms stems from improvements to generalized target detection
algorithms. With the use of specialized architectural designs, task-specific models can improve
performance by utilizing the more universal object properties that these detectors are made to capture.
Prominent face detectors like YOLO [57]. FFaster R-CNN Nogales, et al. [67] and RetinaNet exemplify
this approach. In the research, inspired by YOLOvs5 [7]. They present GCSEM-YOLO, a revolutionary
tace detector that reaches cutting-edge results in single-stage face detection.

Even though face detection performance has significantly improved thanks to deep convolutional
networks, it is still difficult to distinguish faces with large scale differences in real-world situations.
Unlike general-purpose object detection, face detection involves relatively small aspect ratio variations
(typically between 1:1 and 1:1.5) but substantial scale variations, with face sizes ranging from a few
pixels to thousands of pixels [87. This continuous variation in scale complicates adaptation for discrete
anchor-based algorithms, making it difficult to accurately detect faces across diverse scales. To tackle
this issue, scholars have suggested various approaches.Du et al. proposed YOLO-Face Du, et al. [37] an
enhanced face detector based on YOLOVS3 that focuses on scale variation. The method involves using a
more accurate regression loss function and creating anchor scales that are especially suited for human
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faces. For example, Hossain et al. [97] optimized anchor sizes based on the effective receptive field,
allowing the model to better match the natural variation in face sizes. Similarly, FaceBoxes Qi, et al.
[10] introduced multi-scale anchors, which enhance the receptive field by assigning different anchor
sizes to various layers, thereby improving the model’s ability to detect faces at a wide range of scales.
These adaptations help ensure that the network can effectively capture faces of varying sizes, enhancing
detection accuracy and robustness in complex, real-world scenarios. Motivated by the idea of receptive
fields, we created a GCSEM module that offers a greater variety of receptive fields, improving the
model's capacity to identify faces at various scales. Numerous studies have aimed to advance face
detection architectures, primarily divided into single-stage Zhang, et al. [117] and two-stage Wu, et al.
[127] detectors.

Densely packed anchor points are deployed throughout all locations of numerous multi-scale feature
maps with different sizes and aspect ratios by single-stage detectors, which are domain- and anchor-
point-based. By utilizing the flattened anchor points, this method enables the model to eftectively
recognize faces in a single pass, providing a simplified and effective solution that is especially
advantageous for real-time applications. Two-stage detectors, on the other hand, usually use a region
proposal network to produce candidate regions, which are then refined in a second stage. This increases
accuracy but frequently comes at the expense of more computing complexity.

The head network, the feature module, the multitask loss, and the backbone are the four main parts
of this system. The feature extraction module employs a Feature Pyramid Network (FPN) Huang, et al.
[138] to effectively aggregate high- and low-level features from the backbone network, enabling the
model to capture fine-grained and contextually rich details across scales. Additionally, modules for
refining the receptive field, such as Receptive Field Blocks (RIFBs) Terven, et al. [14] are incorporated
to enhance contextual information, especially for challenging face detections in complex environments.

The multitask loss function used in this model includes both binary classification and bounding box
regression. The binary classification loss categorizes predefined anchors as either faces or backgrounds,
while the bounding box regression loss enhances the predicted locations of detected faces, ensuring
precise localization. Together, these components contribute to a more robust face detection system that
performs well across varied face sizes and challenging visual contexts.

However, difficult samples and small-size face detection issues remain a problem for many detection
methods. To address this problem, we designed a novel feature extraction module that improves small-
size and difficult sample detection while minimizing the loss of detail information. However, faces may
appear extremely small in certain situations, such as surveillance settings. Ignoring the identification of
these targets could cause an intelligent surveillance system to malfunction. Tiny faces, particularly
those smaller than 16x16 pixels, are usually detected by densely tiling a large number of tiny anchor
points throughout the image in modern face identification techniques. Although this method increases
recall, it exacerbates the issue of high category imbalance, a significant cause of excessive false positives
[157. The cumulative effect of these false positives during training significantly affects the model's
updates, resulting in a notable sample imbalance that compromises the training process' effectiveness.
This imbalance often causes the model to focus disproportionately on background regions, reducing its
ability to effectively learn distinctive features for accurate face detection, especially for small faces in
cluttered or complex scenes. To deal with the problem, Lin et al. [167] introduced Focal Loss, which
dynamically assigns greater weight to difficult samples, reducing the impact of easily classified examples
and thus helping to alleviate class imbalance. Correspondingly, the Gradient Harmonizing Mechanism
(GHM) Meher, et al. [17] reduces the gradient contributions of simple samples, allowing the model to
prioritize learning from harder examples. Another approach, Prime Sample Attention (PISA) Song, et
al. [17] assigns weights to both positive and negative samples according to distinct criteria, further
enhancing the model’s focus on challenging samples. These strategies collectively improve training
efficiency and detection accuracy by mitigating the effect of sample imbalance and reducing false
positives.
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However, current hard sample mining techniques are difficult to put into reality because they
frequently call for adjusting a lot of hyperparameters. Furthermore, accurately detecting faces with
substantial variations in scale, pose, occlusion, expression, appearance, and illumination remains a
significant challenge [187. In addition, the use of large models and high computational costs can limit
the applicability of these detectors in real-world scenarios, particularly those with stringent memory
and latency constraints. To handle these problems, we propose a novel model called ATW, designed to
alleviate the problem of unbalanced samples. ATW enables the model to adaptively learn the threshold
parameters for positive and negative samples, reducing reliance on manual tuning. Additionally, we
incorporate the wloUv3 Tong, et al. (197 loss to address the issue of slight Intersection over Union
(IoU) bias, which is especially problematic in small-scale face detection. These innovations improve the
efficiency and accuracy of face detection while ensuring that the model can be deployed in resource-
constrained environments.

All in all, our main efforts are:

1.A new feature extraction module which leverages SE mechanisms and spatial attention.

2.Introduced the wloUv3 loss function to enhance bounding box regression and applied an adaptive
anchor frame filtering algorithm to address sample imbalance, improving the model's performance on
challenging detection tasks.

3.To enhance small item identification, a tiny detection head is added.

2. Related Work

For many years, computer vision research has focused heavily on facial detection. Handcrafted
teatures, like Haar features, were the mainstay of early facial detection techniques Alrammahi and
Jabbar 207 control point sets, and edge direction histograms. FFace detection methods started using
neural networks for automatic feature extraction and classification with the introduction of deep
learning. For instance, CascadeCNN Venieris, et al. [217] presented a cascade structure made up of three
meticulously crafted deep convolutional networks that made coarse-to-fine predictions about landmark
and facial positions. Similarly, MTCNN Khan, et al. [227] employed a cascading architecture that
enabled joint alignment of facial landmarks and detection of facial positions. The PCN Kaewkorn, et al.
[237 on the other hand, used a direction prediction network to correct facial orientations, further
improving detection accuracy. These early advancements laid the groundwork for modern, more robust
face detection methods. Early deep learning-based facial detection techniques, however, had a number of
shortcomings, for instance laborious training procedures, a vulnerability to local optima, sluggish
detection speeds, and poor accuracy.

The sliding window paradigm, which applies classifiers to dense grids of images, has roots
extending back several decades. The landmark study by Viola-Jones [247 introduced a cascade
framework that effectively eliminated erroneous facial regions within image pyramids in real-time,
leading to the widespread adoption of this scale-invariant face detection method. While the sliding
window approach Aggarwal, et al. [257] on image pyramids had long been the dominant paradigm for
detection, the introduction of feature pyramids Zhao, et al. [267] has rapidly shifted the focus towards
sliding anchors on multi-scale feature maps. This transition allows for more efficient and accurate face
detection by leveraging rich hierarchical features, enabling better handling of faces at various scales and
improving overall detection performance.

Current facial detection methods build upon advancements from general object detection techniques
and are typically categorized into two main classes: two-stage methods (e.g., Faster R-CNN) and single-
stage methods (e.g., SSD and RetinaNet). Two-stage methods employ a "proposal and refinement"
mechanism, providing higher localization accuracy [27]. Single-stage approaches, on the other hand,
sample facial positions and scales densely, which frequently leads to a notable imbalance between
positive and negative data during training. This imbalance arises because the majority of anchor points
correspond to background regions, while only a small fraction corresponds to actual faces, leading to a
dominance of easy negative samples. This issue can hinder the model's ability to learn effectively,

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 8: 840-855, 2025

DOI: 10.55214/25768484.v918.5356

© 2025 by the authors; licensee Learning Gate



843

particularly for detecting smaller or more difficult faces, and may require additional strategies, such as
loss weighting or hard sample mining, to improve performance. To address this imbalance, sampling
and weighting techniques have been widely adopted. Compared to two-stage methods, single-stage
approaches are more efficient and typically offer higher recall rates, as they perform detection in a single
pass, making them well-suited for real-time applications. But this effectiveness may come at the expense
of decreased localization accuracy and possibly increased false positive rates. The dense sampling of
anchor points in single-stage methods can result in more background regions being misclassified as
taces, and the lack of a refinement step, common in two-stage methods, can lead to less precise bounding
box predictions. Balancing these trade-offs remains a key challenge in optimizing single-stage face
detection models.

The benefits of general object detection methods, like SSD, have had a major impact on recent
developments in facial detection algorithms [287]. Faster R-CNN Han, et al. [297] and RetinaNet [30].
FaceBoxes Qi, et al. [107] a lightweight network built on the SSD architecture, was created by Zhang et
al. This algorithm efficiently reduces the feature size by a factor of 32 through down sampling, while
simultaneously utilizing multi-scale network modules to enrich feature dimensions in both width and
depth. This method enables the model to capture a broader spectrum of spatial information and scale
variations, improving its ability to detect faces at different sizes and under varying conditions. By
balancing dimensionality reduction with enhanced feature representation, the algorithm achieves both
computational efficiency and improved detection accuracy. The SRN Yang, et al. (317 is an improved
version of the RefineDet and RetinaNet object identification algorithms that achieves great performance
by adding multi-branch modules to increase the impact of the receptive field and introducing two-stage
classification and regression procedures. Furthermore, by combining facial alignment and facial
detection, MTCNet utilizes facial landmarks to improve detection performance.

Facial identification algorithms face significant hurdles due to significant fluctuations in facial scale
within complex scenarios, which negatively impacts their performance. Multi-scale detection capabilities
are largely driven by scale-invariant features, which allow the model to detect objects, such as faces,
across a wide range of sizes. This has led to extensive research focused on improving the accuracy and
efficiency of feature extraction. By enhancing feature representations that are robust to scale variations,
researchers aim to create models that can effectively detect faces at both small and large scales while
maintaining high precision and computational efficiency. These advancements often involve the use of
multi-scale feature pyramids, adaptive sampling strategies, and more sophisticated network
architectures that better capture scale-invariant patterns. Using dilated convolutions and lowering the
number of down sampling layers can greatly improve detection performance for small item detection.
Using more anchors, which offer useful prior knowledge, is another way to address this issue; using
denser anchors in conjunction with suitable matching techniques can significantly raise the calibre of
object proposals. Multi-scale training provides a simple yet efficient method to improve multi-scale
object detection performance, and it is essential for building image pyramids and expanding sample
diversity [327]. By training on images at various scales, this technique allows the model to learn features
that are robust to scale variations, improving detection across different object sizes. However, as the
receptive fleld expands and deeper semantic information is integrated, there is a risk of losing fine-
grained spatial details. A natural solution to this challenge is to combine deep semantic features with
shallow features Kavitha and RajivKannan [837 thereby retaining spatial information while benefiting
from richer context. This fusion enables the model to maintain both high-level semantic understanding
and precise spatial localization, improving detection accuracy in complex scenarios.

In densely populated scenes, occlusion poses a significant challenge by causing incomplete data
regarding occluded faces. As certain facial regions become hidden or boundaries become ambiguous, the
model may fail to detect these faces, leading to missed detections and low recall rates. Occlusion can
obscure key facial features or cause overlapping objects to be misclassified, reducing the effectiveness of
traditional detection methods. To address this, more advanced strategies, such as leveraging contextual
information, multi-view detection, or incorporating occlusion-aware models, are needed to improve
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detection accuracy in such complex scenarios. Contextual information is crucial for mitigating occlusion
problems in facial detection, according to earlier research. SSH Zhang, et al. [117] utilizes simple
convolutional layers to extend the windows around candidate regions, effectively incorporating
contextual information to help detect faces that may be partially occluded. FAN Wang, et al. [34]
introduces anchor attention, which prioritizes facial features, allowing the model to focus on key areas
even when faces are partially hidden. PyramidBox Cao, et al. [35] enhances this approach by
implementing a context-sensitive prediction module, replacing SSH's convolutional layers with DSSD's
residual prediction module, further improving its ability to handle occlusions. Additionally, RetinalFace
Hao, et al. [367] applies independent contextual modules across five feature pyramid layers, expanding
the receptive field and strengthening the model’s capacity to model rigid context. These methods have
shown strong performance in mitigating occlusion issues, demonstrating that leveraging contextual
information is an effective strategy for improving detection in occluded areas. This line of research
offers promising potential and warrants further exploration to enhance robustness in challenging
detection environments.

The total loss function is dominated by easy samples, which make up a sizable part of samples in the
single-stage facial detection domain. Consequently, learning features from simple samples is frequently
given priority in models, whereas the more difficult and complex examples are underrepresented
throughout the training phase. Poor generalization may result from this, especially when there is
occlusion, small faces, or odd postures. To tackle this problem, the Online Hard Example Mining
(OHEM) approach integrates hard examples into the stochastic gradient descent (SGD) training process
by choosing them according to their loss values. By focusing the model's attention on these difficult
examples, OHEM helps ensure that the model learns to detect faces under more challenging conditions,
therefore enhancing overall detection accuracy and robustness [877].

3. Method
3.1. GCSEM-YOLO Model Overview

The structure of GCSEM-YOLO is depicted in Figure 1.We have made many adjustments and
enhancements to the YOLOv8n fundamental design, with a particular emphasis on the neck and
backbone parts.
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Figure 1.
YOLOvVS's Network Structure.

The size of the feature map is represented by the parameters w (width) and r (ratio) in Figure 1. By
adjusting the values of w and r to suit the requirements of various application scenarios, the model's size
may be managed. Four feature maps with dimensions of 160 X 160, 80 X 80, 40 X 40, 20 X 20 are
produced by the network.

3.2. Feature Extraction Module with Squeeze-and-Excitation (SE) and Group Convolutions

In our endeavour to bolster the feature extraction process of YOLOVS, we have engineered an
innovative GCSEM Module that seamlessly integrates the Squeeze-and-Excitation (SE) mechanism and
spatial attention, enhancing the network's ability to discern and emphasize pivotal features within the
input data.

Group Convolution: In our module, we use group convolutions to balance feature representation
with parameter economy. By dividing the input channels into groups, this method enables the network
to concentrate on local groups of channels and acquire more generalized features. This method lessens
the computational load related to managing big parameter sets while simultaneously enhancing the
model's capacity to identify various and pertinent patterns across various spatial locations. The
technique improves computing efficiency without compromising the model's capacity to identify
intricate relationships in the data by reducing the number of learning parameters. As a result, the
network architecture becomes more effective and scalable. Mathematically, the feature extraction
process within our module can be articulated as:

X = convl (convZ(x)) (@9

where conv1 denotes a group convolution operation, and conv2 represents a standard convolution
layer tasked with downsampling the feature map, the input data is x

Squeeze-and-Excitation (SE) Mechanism: The SE module Cai, et al. [887] plays a pivotal role in
recalibrating channel-wise feature responses by adaptively scaling them based on their global
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importance. This recalibration improves feature representation and discrimination by allowing the
model to preferentially focus on the most important spatial information. By emphasizing relevant
teatures and suppressing less informative ones, the SE module not only refines the model’s performance
in detecting key objects but also boosts its robustness against varying contextual changes, such as
illumination or pose variations, making it more effective in dynamic and complex environments. After
the first step of convolution, the feature map X becomes the feature map U:

Cl
U, = z VS # XS )
s=1

To overcome the challenge of exploiting channel dependency, the feature map containing global
information is compressed directly into a feature vector, and the global spatial information is selected to
be compressed into a single channel descriptor, i.e., the global average pooling of channels is employed.
Because all of the channel features of the feature maps are condensed into a single numerical value, the
issue of channel reliance is lessened and contextual information is included in the resulting channel-level
statistics. The following is the definition:

1 H W
Ze= g > Y ui) 3)
i=1 j=1

Spatial Attention: We take a two-pronged approach to spatial attention, extracting the most
important spatial cues for each channel by combining adaptive max pooling with adaptive average
pooling. In particular, both average pooling and maximum pooling are used to process the input feature
maps initially. To create a weight vector, these two pooling results are concatenated and then run
through a convolutional layer and a Sigmoid function. The weighted feature maps are then created by
multiplying this weight vector by the input feature maps. This dual strategy ensures a comprehensive
capture of spatial features by leveraging both average and extreme responses, thereby equipping the
model with enhanced sensitivity to the geometric configuration of the input data and improving its
ability to focus on relevant spatial information. Max Pooling definition is as follows:

M) = n%c];xX(i, D 4)

Within the channel dimension, the outcomes of maximum pooling and average pooling are then
combined:

C(ze, M(x)) = [z M(X)] (5)

After a layer of convolution and sigmoid activation:

K{C)=W-C+b (6)
_ 1
S(K)—m (7)

The weighted feature map is created by comparing the weight vector produced by the Sigmoid
function with the initial input feature map:
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Wkx)=SOx (8)

The GCSEM Module's capacity to lessen the loss of spatial information while down sampling is a
key benefit. Preserving sufficient spatial information in large-scale feature maps is crucial for eftective
target detection, especially in face recognition scenarios. Although down sampling improves overall
semantic understanding and extracts high-level semantic information, it frequently results in the loss of
geographical information. In order to solve this issue, the GCSEM Module maintains spatial
information during down sampling. By explicitly modelling the interdependencies between the
convolved feature channels, broad local receptive field features are extracted from the feature map. This
approach captures detailed and localized patterns in the input data, which are crucial for accurate object
detection. Subsequently, spatial information extraction leverages these enhanced receptive field features,
allowing the model to effectively integrate both local and contextual information. This enriched
representation helps the model focus on important spatial cues and improves its ability to handle
complex visual tasks, such as detecting faces at various scales and under different conditions.

Even after the GCSEM module is executed and the feature map is restored to its original size, the
expanded intermediate receptive field feature maps allow for a full extraction of the spatial information
of small objects. The GCSEM module outperforms traditional down sampling convolutions by
significantly reducing the loss of spatial information. It enhances the fidelity of spatial information
within the feature maps, ensuring that fine-grained details, particularly for small objects, are preserved.
This improvement helps the model maintain accurate spatial representation, which is crucial for
detecting small and challenging objects in complex visual scenes.

3.8. WloUwv3 Loss Function and Adaptive Filtering

We present the WIoUv3 loss function to improve the bounding box regression component of
YOLOVS, a novel approach designed to overcome the limitations of traditional IoU-based loss functions,
especially when addressing minor inaccuracies in bounding box predictions. WIoUv3 integrates a
dynamic, non-monotonic focusing mechanism in contrast to traditional loss functions that depend on a
static focusing mechanism. In addition to considering the aspect ratio, centroid distance, and overlap
area, it dynamically modifies the focus according to the prediction quality. The model's capacity to
manage small-scale faces or objects with minute localization mistakes is enhanced by this adaptive
method, leading to more accurate bounding box predictions and better overall performance in
challenging detection scenarios. WloU assesses the anchor box's quality using a sensible gradient gain
allocation technique. Three iterations of WIoU were proposed by Tong et al. [197 . Attention-based
projected box loss was used in the design of WIoUv1, and focusing coefficients were introduced in
WIoUv2 and v3. WIoUv3 innovatively incorporates adaptive weights, denoted by r, which are
dynamically adjusted based on the delta and alpha parameters. These parameters are sensitive to the
scale of the bounding boxes, ensuring a balanced error distribution across predictions of varying sizes.
The WIoUv3 loss function is articulated as follows:

Lwiouvs =1 X Lwiouwt )
B
L*IOU
f =—=—€[0,+0) (11)
LIoU

Where is calculated based on the IoU target values and mean IoU, ensuring smooth adjustments to
loss gradients. and are hyperparameters in the equation that can be changed to suit various models.
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Building upon WIoUvs, we introduce an adaptive filter that effectively filters out most easily
distinguishable negative samples, thereby reducing the number of samples the classifier must process.
This operation addresses a key challenge: when detecting small-scale faces, anchors are densely sampled
from the shallow feature maps of the feature pyramid. While this leads to good recall for small-scale
faces, it also adds a large number of false positives, which exacerbates the imbalance between positive
and negative samples. Our adaptive filter greatly lessens the model's computational load by
automatically eliminating the majority of easily separable negative samples.

The ATW module takes the coordinates and scores of anchor boxes as inputs, using a percentile-
based approach to determine the filtering threshold. The threshold is dynamically calculated based on
the score distribution of the anchors. For instance, if the percentile is set to 95, the threshold
corresponds to the 95th percentile of the score distribution. This dynamic adjustment allows the
threshold to automatically adapt to the score distribution, ensuring that it is optimized for different
datasets and tasks, ultimately improving the efficiency and eftectiveness of the model.

3.4 Small-Scale Detection Head

To tackle the detection of small-scale targets while considering the platform's resource limitations,
this paper strategically integrates the efficient GCSEM Module to design the feature fusion network.
An additional detection scale is introduced to complement YOLOvS's original three, enhancing the
tusion of shallow features with more comprehensive positional information. The GCSEM Module is
strategically inserted as a feature processing block the backbone network. As can be seen in Figure 2,
the incorporation of the GCSEM Module serves to mitigate the resource demands associated with
multi-scale feature fusion. The resultant model, now capable of four-scale detection, witnesses a marked
enhancement in detection performance, particularly for small-scale targets, thus pushing the boundaries
of what is achievable within the constraints of limited computational resources.

medium

xsmall

Figure 2.
The Terms large, Medium, Tiny, and xsmall are used to Indicate an Object's Size.
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4. Experiment
4.1. Wider Face Datasets

With 32,203 photos and 893,703 tagged faces—158,989 of which are in the training set and 39,496
in the validation set—the WIDER FACE datasets serve as a standard for face detection. There are three
detection complexity levels in each subset: Easy, Medium, and Hard. As can be seen in Figure 3, the
scale, placement, lighting, expression, and obstruction of these faces differ significantly.

Figure 3.
Examples of the WIDER FACE Dataset.

These public datasets WIDER is the primary source of the photographs chosen for WIDER FACE.
The 61 WIDER event categories were chosen by the creators, who are from the Chinese University of

Hong Kong. For each category, 40%, 10%, and 50% were chosen at random to serve as the training,
validation, and testing sets.
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Figure 4.
Manually Labelled Object Details in the WIDER FACE Dataset

Python 8.8, PyTorch 2.1, and Cuda 11.8 were used in the desktop computing environment for the
trials, which were conducted on a Windows 11 operating system. An NVIDIA 3090 graphics card was
used as the hardware for these tests. The code for implementing the neural network was modified from
Ultralytics version 8.0.202. The input images were resized to 640 X 640 pixels, and training was carried
out for 300 epochs. Optimization was performed using the stochastic gradient descent (SGD) algorithm,
starting with an initial learning rate of 0.01, which was progressively reduced to 0.0001. To ensure a
fair and unbiased comparison among models, each was trained from scratch without employing pre-
trained weights. This configuration made it possible to assess the model's performance only using its
architecture and training.

4.2. Indicators of Experimental Evaluation

The suggested model's detection capabilities and model size were assessed. The accuracy of each
object category was assessed using the precision (P), recall (R), average precision (AP), and mean
average precision (mAP). Additionally, the giga floating-point operations per second (GFLOPs) metric
was used to evaluate the networks' computational complexity. Frames per second (FPS) was used to
gauge the model's real-time processing performance, and the number of parameters dictated the model's
size.

Precision is defined as follows: Precision is the ratio of all detected samples to the number of
positive samples predicted by the model:

Precision = e 12
recision = 7 T FP (12)
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Precision is calculated as follows: Precision is the ratio of all detected samples to the number of
positive samples identified by the model:

Recall = — & 13
A TTPYFN (13)

The area under the precision-recall curve is the mean precision (AP), which is calculated as follows:

1
Asz Precision(Recall)d (Recall) (14)
0

The model's detection performance across all categories is measured by mean average
precision(mAP), which is the outcome of the weighted average of AP values for each sample category.
The formula is displayed below:

N

1
mAP = NE AP, (15)

i=1

The value having a category index value of is indicated in the equation above. indicates how many
sample categories there are in the training dataset. When the detection model 10U is set to 0.5, the
average accuracy is indicated by mAP0.5: when the detection model IOU is set to 0.5 to 0.95 (taken at
0.5 intervals), the average accuracy is indicated by Map 0.5:0.95.

5. Yolov8 Comparative Analysis
Table 1and Table 2 as well as Figure 5 display the GCSEM -YOLO and YOLOvS8 models' sizes and
performance on the Wider Face dataset.

Table 1.

A Comparison Between YOLOv8 and GCSEM-YOLO.
Network Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) FPS
YOLOvSn 84.7 58.0 66.7 36.6 162
GCSEM-YOLO-n 89.8 69.9 78.8 45.1 142
YOLOvSs 85.2 58.6 69.5 40.9 148
GCSEM -YOLO-s 92.2 72.9 82.5 47.1 117
YOLOvSm 87.6 60.9 72.8 48.6 117
GCSEM -YOLO-m 95.8 76.8 88.1 49.5 99
YOLOvSI 88.9 65.1 76.9 49.2 94
GCSEM -YOLO-1 98.4 82.9 95.1 55.7 88

In terms of detection accuracy at various scales, the results in Table 1 show that GCSEM-YOLO
performs better than the conventional YOLOvV8 model. In particular, GCSEM-YOLO-n outperforms
YOLOvV8n by 12.1%, achieving a mAP50 score of 78.8%. Furthermore, at all scales, GCSEM-YOLO
attains better accuracies based on an FPS that is just marginally less than YOLOVS. According to these
findings, GCSEM-YOLO reduces computational costs and increases detection accuracy while using a
smaller model size.
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Figure 5.
Detection Accuracy Versus Scale.

Regardless of the scale, Figure 5 shows that the suggested detection model continuously performs
better than the baseline model. Subsequent study shows that the suggested model's detection
performance differs dramatically from the baseline model (in this case, YOLOVS) as the model size
grows. According to the mAP50 indicator, GCSEM-YOLO-n performs 12.1% better than YOLOVS in
the "n"-scale setup. Nevertheless, the mAP50 indication is 18.2% larger when the scale is raised to "l,"
greatly increasing the difference between the two models. This occurrence suggests that as the number
of model parameters and computational complexity rise, GCSEM-YOLO's detection accuracy improves
more quickly. Therefore, when implemented on a hardware platform with adequate computational
capabilities, the suggested model should offer high object-detection accuracy, particularly in large-scale
settings.

Table 2.
Comparing The Detection of Faces Of Varying Sizes Using Yolovs.
Network AP-Small (%) AP-Medium (%) AP-Large (%)

Network AP-easy (%) AP-Medium (%) AP-hard (%)
YOLOvs8n 75.6 75.1 61.3
GCSEM-YOLO-n 91.5 89.9 79.3
YOLOvS8s 78.4 78.2 61.9
GCSEM -YOLO-s 92.0 90.1 81.1
YOLOvSm 79.1 79.0 62.1
GCSEM -YOLO-m 92.9 90.8 83.5
YOLOvsI 82.7 82.2 65.8
GCSEM -YOLO-1 94.3 93.0 84.7
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Table 2 shows that GCSEM-YOLO outperform YOLOvVS in dealing with large-size objects. In
addition, GCSEM-YOLO also outperforms YOLOvS in detecting hard targets, especially in the l-size
model, where GCSEM-YOLO-I] outperforms YOLOvS] by 18%-21.4%. According to these findings,
GCSEM-YOLO offers notable benefits when it comes to identifying tiny and medium-sized faces,
particularly small faces.

6. Ablation Experiment

This study carried out a number of compared experiments to evaluate the effects of including the
GCSEM module in the model and to make ablation trials easier in the future. At various backbone
network tiers, the GCSEM module was utilized in place of the Conv module, with YOLOvS8n serving as
the baseline model. Table 3 displays the experimental outcomes, with the "+" sign denoting
modifications to the baseline model. According to the findings, GCIM-YOLO-N's mAP50 was 10
percentage points greater than the original YOLOvS8n and 8 percentage points higher than YOLOvSn.
The eftectiveness of the GCSEM module was validated by ablation tests on the WIDER FACE dataset,
which showed that the suggested enhancement significantly increased the accuracy of face detection.

A: Instead of using the original IoU loss function, the WIoUv3 loss function is used. Add ATW

module before computing wiouv3 loss.

B: Add the xsmall-detection head.

C: The GCSEM module is utilized as the feature extraction module in place of the Conv module.

Table 3.

Ablation Study Results on the wider face dataset.
Network Precision/% Recall/ % mAPO0.5/% mAPO0.5:0.95/%
YOLOvSs 84.7 58.0 66.7 36.6
+A 85.9 60.8 71.2 39.0
+A+B 86.4 62.1 72.9 41.1
+A+B+C 89.3 69.5 78.8 45.1

As observed from the experimental results in Table 3, each improvement strategy contributes to
varying degrees of enhancement in detection performance when applied to the baseline model. The
introduction of WIoUv3 in the prediction box regression loss, combined with the ATW module,
improves the model's localization ability through a smarter sample allocation strategy, leading to a 4.5%
increase in mAP50. Adding the xsmall detection head to the detection head architecture improved the
mAP50 by 1.7%. An effective attention mechanism that improves concentration on important
information in the feature map is integrated into the GCSEM module, which takes the place of the
original Conv module in the backbone. As a result, mAP50 significantly improves by 5.9%.

Since there are a lot of little targets in the dataset, the GCSEM module's fusion of shallow feature
information successfully lowers the rate at which small targets leak out. All things considered, our
suggested feature fusion network shows promise in significantly enhancing the model's detection
performance, especially for small-scale faces.

7. Conclusions

In order to tackle the problem of small target recognition in face detection tasks, we suggest the
GCSEM-YOLO model, which is based on YOLOvS8. The model successfully addresses typical face
detection problems. The new GCSEM neck structure, which makes multi-scale feature fusion easier, is a
significant algorithmic advance. By achieving a balanced integration of spatial and semantic information
in the feature map, this structure enhances the model's capacity to identify faces at various scales.
GCSEM decreases the sparsity of spatial information brought on by down sampling and improves
teature extraction performance as compared to the conventional convolutional layer. FFurthermore, a key
factor in enhancing detection performance for small faces is the xsmall detection head, which is
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especially made for small target face detection. The computational complexity of the model is further
decreased, increasing its efficiency, through the application of WIoUv3 loss and a novel anchor frame
filtering approach. GCSEM-YOLO performs better than YOLOVS in terms of detection accuracy on
practically all scales, according to experimental results on the WIDER FACE dataset. These findings
indicate how well the GCSEM-YOLO model works to improve tiny target detection for facial photos.
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