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Abstract: Convolutional deep learning is commonly and frequently used nowadays for high data 
throughput in image analysis and computer vision applications. The size of such models depends on the 
number of hyperparameters and the precision required for each hyperparameter. The training of these 
models requires enormous computational power for images of high dimensionality, resulting in trained 
models of large sizes. To solve this challenge, several approaches have been used, including quantization 
and pruning. These techniques have been proven to be effective in reducing the size of the models at the 
expense of lower accuracy, while in order to ensure higher performance, several hyperparameters need 
to be optimized. This research effort attempts to evaluate the effect of different combinations of classical 
and hybrid optimizer-loss functions with the U-Net convolutional deep learning model regarding their 
segmentation accuracy in cell imaging, while implementing both quantization and pruning. Different 
metrics are used to evaluate the training and testing process, such as precision, recall, F1 score, dice 
coefficients, Jaccard index, etc. It is found that the hybrid loss function combination of binary cross-
entropy with Jaccard loss functions and RMSprop as the best optimizer results in the highest 
segmentation accuracy. These combinations of optimizers and loss functions are implemented with post-
training quantization and quantization-aware training, and in both cases, the accuracy metrics were not 
compromised significantly, as they resulted in a decrease of less than 1%. Pruning, as a process to reduce 
the computational complexity and the size of the model, has proven to be effective by also providing the 
highest performance among other methods. 

Keywords: Hybrid loss functions, Optimizer, Pruning, Quantization, Segmentation, U-net. 

 
1. Introduction  

Deep learning utilizes artificial neural networks with several layers to extract complex patterns 
from data [1] with the most common use including the processing and the analysis of images [2]. 
Image analysis includes three important steps as follows: i) object detection meaning clearly identifying 
the region of interest where the object is located [3] ii) object segmentation meaning accurately 
drawing a closed contour around an object of interest thus separating it from the background and iii) 
object classification in order to identify the category where the object belongs [4, 5]. A high accuracy in 
each of these steps leads to a better quantitative image analysis and performance [6]. In biomedical 
image analysis, an accurate cell image segmentation plays a vital role as proper cell image features 
extraction from the segmentation step leads to accurate quantitative data that can be used in various 
applications, where the most important one is apriori disease diagnosis [7]. Other applications such as 
drug delivery systems and analysis of cell behaviour with/without a biomaterial present, are also 
important as there are vast applications nowadays compared to decades earlier [8]. Cells have two 
major components, the nucleus and the cytoplasm, where the latter is deformable and more transparent 
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to illumination. The noise spectrum adds another challenge to the high dimensionality of the data and in 
order to overcome this suitable pre-processing is used. Pre-processing includes noise removal, edge 
enhancement, contrast enhancement and all these have proven to affect the overall accuracy of the 
trained models [8, 9]. Optimal bandwidth of filters was reported to lead to highest classification 
accuracies of Balb 3T3 cell types.   

Numerous studies have been conducted in this field, and many deep learning architectures have been 
developed for this task, where U-Net architecture has had a large number of applications due to its 
simpler architecture, high performance and efficiency [7-11]. Its encoder-decoder structure, together 
with the implementation of skip connections, provides an efficient spatial and contextual information in 
an image, making it a preferred choice especially for image segmentation tasks and its implementation 
being added in various applications such as ImageJ etc. Even though there is a lot of research, 
optimization of the best parameters for the U-Net architecture for specific challenging tasks and 
datasets, it is still open research.  

 U-Net architecture does not require high computational power compared to more complex other 
architectures [12]. However, alterations such as quantization and pruning are being implemented and 
suggested in order to be more efficient in devices that offer limited memory and speed [13, 14]. 
Quantization is a process that reduces the model weights, precision values and activations functions, 
leading to less memory usage and faster computations processing. Pruning is a process that removes 
less critical parameters to reduce the model size. Tuning to define the optimal parameters for these 
variant architectures is a challenge as there is a need to balance efficiency and accuracy, since these 
tuned models can also degrade the performance compared to the original U-Net. 

During the training process, the selection of the optimizer and loss function is very important as 
they directly influence the performance of the architecture, affecting also the segmentation results 
provided by the model. There is related research [15-18] done in finding the optimal optimizer and loss 
function in U-Net architecture. Their focus is more on MRI, CT scan, Ultrasound images. However, the 
number of research efforts is very limited for microscopy images, especially the brightfield microscope, 
which produces low quality images compared to others. Several studies focus on optimizing specific 
parameters in their tasks. Some find the best optimizer, whereas other studies find the best loss function. 
The effectiveness of different activation functions has been compared in the literature and often the 
highest performing one has been associated with higher computational complexity [19]. The choice of 
the optimizer proved to greatly affect the classification accuracy and the optimizers would compare 
differently across different architectures [20]. They measured the performance based on AUC values. 
Previous studies have used evolutionary optimisation of loss functions using genetic programming 
[21]. They found a new loss function that had a faster convergence and higher accuracy than cross 
entropy loss function in data classification.  

Here, we advance the work presented in Polisi, et al. [22] by analysing different combinations of 
optimizers and loss functions with U-Net, quantized U-Net and U-Net with pruning for unstained cell 
image segmentation. The contribution of this work is the evaluation of the best combination of 
optimizers and loss functions when used with different architectures. This is done while monitoring for 
the size of the trained model using quantization and pruning. The base function for the optimizer will be 
Adam, and Binary Cross Entropy (BCE) will be the base for the loss function. The list of optimizers to 
be tested is the following: Adagrad, Nadam, RMSprop and for the loss functions the hybrid functions of 
Dice-BCE, dice-focal loss function, and Jaccard-BCE. The metrics used for evaluation are: the DICE 
coefficient, Intersection Over Union (IoU), Precision, Recall for the training and the validation phase. 
Whereas, in the testing phase the metrics used are Accuracy, F1 score, Jaccard, Precision and Recall. 
The findings in this work help to provide an optimal combination that provides high efficiency that can 
be later used in other cell image segmentation applications.  
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 2. Materials 
The dataset consists of a total number of 1088 cell images with their corresponding ground truth 

ones. The size per image is 256x256 (Figure 1). The dataset is divided into training, validation and 
testing: 654, 217, 217 images respectively. 
 

 
Figure 1. 
Sample images of the dataset  

  

3. Methods 
The focus on this work is finding the best combination of architectures, optimizers and loss 

functions, by also using quantization and pruning to the U-Net architecture. Training and testing are 
done using GPU GeForce 2060 Super Graphics Card with 8 GB memory.  
 
3.1. U-Net Architecture 

U-Net architecture involves a convolutional neural network designed for image analysis, but gained 
its popularity from its high performance in image segmentation. The U shape, characteristic of this 
model, originates from its encoder-decoder structure with skip connections. The encoder down-samples 
the input image in every layer, aiming to find crucial information in the form of features, while the 
decoder up-samples these features to go back to spatial information. The skip connections link the 
corresponding encoder-decoder layers, by preserving the essential details and features. In this study, a 
basic U-Net architecture with 5 layers is implemented, using ReLU activations functions and batch 
normalization.  
 
3.2. Quantized U-Net Architecture 

Quantized U-Net is a modified architecture of base U-Net that uses the quantization process in 
order to reduce the numerical precision of the weights from 32-bit floating-point numbers to 8-bit 
integers. This process decreases the memory and computational power drastically, and reduces the 
model size significantly. This may result in less accurate but still acceptable cell segmentation, having 
applications in low cost, portable devices that produce results in real time. In this work two different 
quantization procedures are used: a) during training, referred to as DuringTQ and b) after the training, 
referred to as PostQ. Initially the batch size for quantization was 2, and then changed to six to lower the 
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amount of time needed for training (see Table 1). Due to the computational environment limitations, the 
batch size for the DuringTQ quantization is six compared to eight for all the other models.  
 
Table 1.  
Training and Testing time for the During TQ quantization when changing the batch size. 

Batch Size 
Time per Epoch 
(sec) 

Total Time Nr Images  
Test Time 
(sec) 

Nr Images 
Testing 

Model 
Size (MB) 

2 ~120 ~3h 35min 
654 Training 217 
Validation 

46 217 364 

6 ~73 ~2h 10min 
654 Training 217 
Validation 

44 217 364 

 
3.3. U-Net with Pruning 

U-Net with pruning is a modified architecture of the base U-Net that uses the pruning process to 
remove the weights or connections that are not too important. This compression technique reduces the 
memory usage and the computations, resulting in a smaller and less complex architecture. It is again a 
useful technique in devices used in real time applications with limited small memory and limited 
computational power. In this work the pruning starts from 50% to 90% and is updated every 100 steps.  
 
3.4. Set Of Optimizers and Loss Functions 

This study aims to identify the best optimizer-loss function combination while taking as the base 
combination for U-Net architecture the BCE-Adam. Different combinations have been used herein that 
can be summarized as follows: i) set of optimizers such as Adagrad, Nadam, RMSprop and ii) set of loss 
functions: the hybrid functions of Dice- BCE, Dice-Focal and Jaccard-BCE. 

Adam (Adaptive Moment Estimation) [23] uses adaptive learning rates and momentum-based 
gradient updates in order to assign the weights per each parameter. It keeps track of exponentially 
weighted moving averages of both gradients which allows for a fast convergence and more stable 
optimization. Due to its efficiency and robustness, it is a very popular choice as optimizer for various 
tasks and architectures. It was found to be the best optimizer when combined with VGG16 architecture 
for image classification [16].  

Adagrad (Adaptive gradient descent optimizer) [24] uses the gradient information to dynamically 
update the learning rates of the parameters. If a parameter is not changed very often it is assigned a 
higher learning rate compared to the parameters who change frequently.  The accumulation of squared 
gradients, however, can produce low learning rate over time, affecting the training process due to 
needing more time to converge. 

Nadam (Nesterov-Adam) [25] is a modified version of Adam optimizer by adding Nesterov 
momentum to it. It combines the adaptive learning rates and momentum-based updates, predicting the 
future gradient direction which results in a higher convergence and accuracy. It is especially useful on 
the segmentation tasks where the information varies or it is very noisy.  

RMSprop (Root Mean Square Propagation) [26] tries to reduce the learning rate limitations of 
Adagrad optimizer through gradient normalization. The normalization is done by removing the average 
value from the squared gradient values, thus making sure to have a more effective training. It is very 
effective in segmentation of non-stationary objects, making it a good choice for cell image analysis.  

BCE (Binary Cross-Entropy) is a loss function that focuses on binary pixel classification problems 
where every pixel is either the background or it belongs to the object of interest. It calculates the cross-
entropy of the predicted probabilities and the ground truth, ensuring an effective and accurate 
classification of the pixels. However, this may not be true on datasets that are not balanced, hence, it is 
often suggested to be combined with other loss functions.  

Dice-BCE is a hybrid loss function combining Dice coefficient loss with binary cross-entropy. Dice 
coefficient loss focuses on the overlapping between the predicted segmentation and the ground truth 
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label, whereas BCE focuses more on the classification of the pixels. This hybrid combination provides a 
balance between the alignment of the segmentation via Dice with the local pixel accurate classification 
via BCE. It is usually effective on images where the object of interest is small compared to the 
background (such as cells for example).  

Dice-Focal is a hybrid loss function combining Dice coefficient loss with Focal loss. Focal loss 
assigns higher weights to pixels that are hard to classify. This hybrid combination tries to have an 
accurate boundary segmentation via Dice with a focus on the right classification of the challenging 
regions, such as low contrast cytoplasm or overlapping cells.  

Jaccard-BCE is a hybrid loss function that combines the Jaccard index loss with BCE loss. Jaccard 
index loss reduces the union of false positives and false negatives, hence producing a more accurate 
segmentation. This hybrid combination tries to balance the accuracy of the pixel level classifications 
with the overall segmentation results, making it an effective method for challenging tasks such as 
brightfield image segmentation.  

This work focuses more on identifying the best combination among different optimizers and loss 
functions, by taking as the base scenario the combination between Adam optimizer and BCE loss 
function. Then, a combination between the other functions is provided by having each of them as a static 
parameter (1:M relationship instead of M:M). The different combinations are used for all three 
architectural models such as U-Net, quantized U-Net (during and post training) and U-Net with 
pruning.  
 
3.5. Metrics Used for Evaluation 

Different metrics are used to evaluate the combination of architectures with optimizers and loss 
functions. The training and validation process is evaluated through the Dice coefficient, Intersection 
Over Union (IoU), precision and recall in order to measure how accurate the predicted segmentation is 
compared to the ground truth. Dice coefficients find the intersection ratio between prediction and the 
mask whereas IoU considers both the intersection and union. Precision and recall are able to determine 
how good the model is in correctly identifying the region of interest (cells), by also minimizing the false 
negatives, giving a proper balance between sensitivity and specificity. The testing process is evaluated 
by accuracy, F1 score and Jaccard index. Accuracy provides the percentage of pixels that are correctly 
classified in the entire image. F1 score is the harmonic mean of precision and recall, generalizing them 
into a single metric. Jaccard index, which is similar to IoU, gives the evaluation of the predicted 
segmentation with the ground truth. Table 2 summarizes all these parameters.   
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Table 2. 
Parameters used in this experiment. 

Dataset 

• Total nr. Images I /Labels L 1088 images I 

• Image size: 256x256 

• Training dataset: 654 I+L 

• Validation dataset: 217 I+L 

• Testing dataset: 217 I+L 

Architecture 

• U-Net 

• Base  

• DuringTQ 

• PostQ 

• Pruned 

Parameters of the architectures 
• Batch size: 2, 6, 8 

• Epoch nr.: 100 

Optimizers 

• Adam 

• Adagrad 

• Nadam 

• RMSprop 

Loss functions 

• Binary Cross entropy BCE 

• Dice-BCE 

• Dice-Focal 

• Jaccard-BCE 

Combinations 

• Adam-BCE (base model) 

• Adam- Dice BCE 

• Adam- Dice Focal 

• Adam – Jaccard BCE 

• Adagrad – BCE 

• Nadam – BCE 

• RMSprop- BCE 

Metrics used for evaluation 
Training and validation: 

· Dice coefficient 

· Intersection over Union IoU 

· Precision PREC 

· Recall REC 
Testing: 

· Accuracy 

· F1 score 

· Jaccard index (IoU) 

· PREC 

· REC 

 

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡: =
2 ∗ |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

𝐼𝑜𝑈 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

𝑃𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑁
 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗ 
𝑃𝑅𝐸𝐶 ∗ 𝑅𝐸𝐶

𝑃𝑅𝐸𝐶 + 𝑅𝐸𝐶
 

 

 4. Results 
Previous work studied the combination of Dice and BCE loss function on medical imaging 

segmentation and concluded that the combination of the two loss functions provides a better 
performance for the model, as they tested them using hidden information and changing the values of the 
pixels [27].  

The base U-Net results are reported on Figure 2 where no quantization or pruning is implemented. 
When using different accuracy metrics, the order from the highest performing metric to the lowest one 
is as follows: precision leads to highest segmentation performance, while dice coefficient, recall and IOU 
lead to the lowest segmentation results. The higher precision points also a statistical effect as this is 
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associated with a large number of true positives, and in image segmentation tasks like in this work this 
means that there is a large area covered by the cells.  
 

 

 
Figure 2. 
IoU values for different ‘optimizer-loss function’ combinations for Base U-Net model: a) the first 40 
epochs, b) the whole training. 

 
When comparing the loss functions, higher accuracy metrics are observed for two combinations of 

hybrid loss function used with Adam optimizer (see Figure 3). These two weighted loss functions are 
the combination of the dice loss with the focal loss (Dice-Focal) and that of the binary cross entropy loss 
with Jaccard loss function (BCE-Jaccard). Dice focal loss function combined with Adam optimizer has 
the fastest convergence and also reports the lowest loss function. Adagrad is found to be the worst 
performing optimizer. Previous work showed similar results where Adagrad was found to perform 
worse than RMSprop and Adam on weather datasets [28].   
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Figure 3. 
Training metrics for BCE-JACCARD combination when using Base, PostQ and Pruned U-Nets. 

 
The base combination of the optimizer-loss function fusion is Adam-Binary Cross Entropy. The aim 

is to find the best combination that provides the higher performance in the segmentation of the selected 
dataset. Figure 4 shows the visualization of the evaluation metrics of the training process for Base U-
Net, PostQ and Pruned. The highest values are reported when RMSprop and ADAM are used as the 
optimizer. RMSprop outperforms the other optimizers in every model Base, PostQ and Pruned U-Net, 
having a very slight only difference with the Adam Optimizer. The highest accuracy metrics are 
observed when it is combined with Pruned U-Net. Previous studies have reported a superior 
performance of RMSprop in similar settings [29]. 

The loss functions that are taken in consideration are hybrid functions that combine the most 
common loss functions from the literature. Figure 5 shows their training performance on different 
metrics where Dice-Focal and Jaccard-BCE outperform the other loss functions, especially when 
combined with Pruned U-Net.  
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Figure 4. 
Different optimizers for Base, PostQ and Pruned U-Net representations of the training evaluation metrics. 
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Figure 5.  
Different loss functions for Base, PostQ and Pruned U-Net representations of the training evaluation metrics. 

 
The convergence to highest values is observed over the first 40 epochs of the training process and is 

associated with a learning rate of 10-4 and after the 40th epoch the learning rate drops down to 10-7. 
Learning rate (LR) is an important parameter that leads to controlled convergence to local and global 
minima and needs control depending on the tasks. Different control mechanisms have been developed 
for the learning rate including exponential increase after each epoch [30]. LR can have two major 
regimes of low and high LR that are separated by a phase transition [31]. Depending on the 
architecture used, LR does have a narrow and stable regime. In order to ensure a gradual convergence 
its decay is often employed. This contribution can be substituted intuitively by increasing the batch size 
during training as reported in several studies [20, 32]. The same effect was observed in this work as a 
higher accuracy in the testing phase and a faster training time was observed when the batch size was 
increased from two to six (See Figure 6 below). Precision was 97.32% when trained with batch size of 
six and 96.43% for a batch size of two. When using the same loss function, RMSprop performs as the 
top optimizer with high convergence rate and high accuracy.  
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Figure 6. 
Quantized during the training model for batch size 2 and 6. 

 

5. Discussion 
The trained models are used to test another blind dataset, selected randomly for every combination, 

and left purposely out of the training and validation process in order to evaluate their performance. 
Table 3 summarizes the results of all combinations for Base, during training/Post quantization and 
Pruned U-Net models by showing the average of each metric of the testing phase. The metrics used are 
accuracy, F1 score, Jaccard, Recall and Precision. Figure 7 provides the grid heatmap of the metrics of 
the testing process and it is notable that Jaccard has the lowest values compared to other metrics while 
the combination BCE-Adagrad provides the lowest results compared to others models and 
combinations.  Pruned U-Net outperforms the other architectures by having the highest F1 score, 
Jaccard and Accuracy (~0.95, 0.90 and 0.95 respectively). Base U-Net and DuringTQ U-Net show 
similar results, and PostQ U-Net sometimes has a slight drop on the values of recall, but also exhibiting 
an improved precision in several scenarios.  
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Figure 7. 
Grid heatmap of Metrics of the testing phase for all combinations. 

 
By analysing the testing score metrics, it is obvious that Pruned U-Net outperforms the other 

models consistently. During the training process, RMSprop optimizer was noted to perform best 
compared to the other optimizers, however, the higher performance was not reconfirmed during testing. 
During the testing phase Adam has slightly higher accuracy (~0.94-0.95 F1 score values and 0.95 
accuracy) compared to RMSprop (~0.94-0.95 accuracy). This small difference may also come from the 
randomly selected images left out for testing. Adagrad has the lowest performance, with accuracy values 
dropped to ~0.82-0.87 and F1 score values among the range of [0.80,0.85]. 
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Table 3. 
Evaluation metrics for the testing phase of all different combinations. 

Combination Model Accuracy F1 Jaccard Recall Precision 

BCE-ADAM 

Base 0.9535 0.9395 0.8941 0.9394 0.9427 

PostQ 0.9531 0.9415 0.8962 0.9376 0.9508 

DuringTQ 0.9527 0.9387 0.8925 0.9253 0.9594 

Pruned 0.9542 0.9444 0.8992 0.9480 0.9446 

BCE-NADAM 

Base 0.9496 0.9359 0.8877 0.9348 0.9403 

PostQ 0.9485 0.9340 0.8850 0.9309 0.9450 

DuringTQ 0.9496 0.9331 0.8849 0.9215 0.9553 

Pruned 0.9541 0.9443 0.8991 0.9530 0.9393 

BCE-RMSprop 

Base 0.9481 0.9334 0.8835 0.9384 0.9318 

PostQ 0.9491 0.9313 0.8831 0.9192 0.9553 

DuringTQ 0.9493 0.9338 0.8849 0.9284 0.9475 

Pruned 0.954 0.9464 0.9019 0.9504 0.9445 

BCE-Adagrad 

Base 0.8259 0.8019 0.6842 0.7810 0.8459 

PostQ 0.8229 0.8085 0.6901 0.7786 0.8600 

DuringTQ 0.8315 0.8212 0.7067 0.8032 0.8551 

Pruned 0.8724 0.8528 0.7555 0.8277 0.8866 

DiceBCE-ADAM 

Base 0.9534 0.9427 0.8969 0.9416 0.9460 

PostQ 0.9531 0.9407 0.8952 0.9326 0.9557 

DuringTQ 0.9532 0.9399 0.8949 0.9376 0.9498 

Pruned 0.9546 0.9446 0.8994 0.9477 0.9439 

DiceFocal-ADAM 

Base 0.9533 0.9448 0.8992 0.9489 0.9434 

PostQ 0.9531 0.9404 0.8949 0.9422 0.9445 

DuringTQ 0.9548 0.9454 0.9013 0.9455 0.9483 

Pruned 0.9534 0.9434 0.8975 0.9494 0.9411 

JaccardBCE-ADAM 

Base 0.9541 0.9449 0.8997 0.9452 0.9471 

PostQ 0.9531 0.9404 0.8949 0.9422 0.9445 

DuringTQ 0.9544 0.9431 0.8987 0.9409 0.9506 

Pruned 0.9535 0.9434 0.8975 0.9494 0.9411 

Jaccard BCE  
RMSprop 

Base 0.947798 0.957535 0.897256 0.957799 0.956771 

PostQ 0.954473 0.944771 0.899828 0.940101 0.967221 

DuringTQ 0.951916 0.943059 0.896906 0.938187 0.951274 

Pruned 0.9561 0.9561 0.9314 0.9602 0.9432 

 
Related to different loss functions tested in this work, BCE and Dice-BCE have very similar results 

with one another, where again Pruned U-Net provides the highest values even for the different loss 
function combinations. Dice-Focal hybrid loss function slightly improves Jaccard and F1 score values, 
and Jaccard-BCE have better Jaccard and recall values, indicating that these two loss functions provide 
better segmentation of the images in this type of datasets. The combination of Jaccard-BCE with 
RMSprop-Pruned U-Net has the highest metrics of all combinations, especially on AUC, Jaccard index 
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with a difference of 0.06 from the average values of the previous combinations, and REC. This again is 
shown on previous work, where this combination had the highest REC value [29].  

The impact of the optimizer and loss function can be observed better when evaluating the cell 
segmentation of the images with their ground truth. Figure 8 and Figure 9 show the original image, the 
ground truth and cell segmentation of BCE-RMSprop and Jaccard-BCE with Adam combined with all 
different proposed models. It can be observed that compared to the first combination, the second one 
provides a better segmentation for these images, making the combination of the hybrid loss function 
Jaccard-BCE with ADAM a good choice for segmentation parameters. This combination can be later 
used for cell segmentation and cell counting, described in the previous work [33] which provide 
meaningful information related to cell shape. 

 

 
Figure 8. 
Segmentation of cell images when BCE-RMSprop is combined with different models. 
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Figure 9. 
Segmentation of cell images when Jaccard-BCE-Adam is combined with different models. 

 

 6. Conclusion 
Many deep learning trained models are required to be implemented on edge devices and 

microcontrollers that have limited memory and computational power. This need has led to the 
development of TinyML, an area that has gained momentum in all fields including medicine, 
agriculture, smart cities etc. Quantization and pruning are two of the most fundamental techniques 
allowing the successful deployment of trained models on portable computing units. In this work, the 
efficiency of these two techniques was tested for the segmentation of highly dimensional unstained 
brightfield cell images. The use of optimization techniques is associated with a decrease in the accuracy 
and to overcome this, several combinations of optimizers, loss functions and hybrid loss functions were 
tested. Binary cross entropy was reconfirmed to be a good loss function and similarly the hybrid loss 
function combining binary cross entropy and the jaccard loss performed very well too. A higher batch 
size of six when compared to a batch size of two reduced the training time and improved the accuracy by 
1%. Adagrad was found to be the least performing optimizer for this dataset during the training and 
testing process, with RMSprop and ADAM performing the best. Pruned U-Net provides the highest 
performance during the testing phase, having accuracy value of 95%. The hybrid combination of Dice-
Focal and Jaccard-Binary Cross Entropy loss functions provide higher performance compared to other 
combinations, making them more suitable for cell image segmentation of similar data. The findings of 
this work highlight the importance of choosing the right optimization and loss function techniques, 
paired with the appropriate model compression method to ensure accurate segmentation in cell imaging.    
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