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Abstract: This study examines the Uncapacitated Facility Location Problem (UFLP) in the context of 
landfill placement, a critical factor in sustainable waste management. It introduces an enhanced model 
that integrates operational logistics, cost structures, demand distribution, temporal dynamics, and 
population growth projections to optimize landfill siting strategies. We apply the proposed model in a 
case study of Cape Coast Metropolis, Ghana, which includes twenty-three suburbs and seven potential 
landfill sites. The analysis evaluates the impact of landfill distribution on waste management efficiency 
and operational expenses over time. Results indicate that while increasing the number of landfills 
improves waste distribution, it also escalates long-term operational costs. The study underscores the 
need for strategic planning to balance efficiency and cost-effectiveness. Additionally, incorporating 
temporal dynamics is crucial for long-term sustainability. The study highlights the importance of 
integrating economic, operational, and environmental considerations in landfill siting decisions, 
providing a foundation for future research on sustainable waste management. Optimized landfill 
placement can lead to significant cost savings and improved resource allocation. The findings inform 
policymakers and businesses in developing regulations that promote efficient facility placement, enhance 
disaster response, and support long-term waste management sustainability. 

Keywords: Accessibility, Optimal locations, Semi-obnoxious facilities, Sustainability, Transportation costs, Waste collection; 
Waste disposal. 

 
1. Introduction  

Facilities are fundamental to shaping our lives and environments, from libraries that enhance social 
well-being to factories that drive economic growth [1, 2]. The selection and placement of  these 
facilities are critical, influencing both quality of  life and environmental sustainability. While desirable 
facilities, such as parks, positively contribute to our surroundings, undesirable ones, like landfills, can 
present significant challenges [3]. 

Facility location optimisation is critical to operational efficiency across various sectors, from 
logistics and transportation [4, 5] to waste management and healthcare services. This study area has 
gathered significant attention over the past decade, with researchers focusing on developing models that 
balance cost-effectiveness with service quality. One of  the most prominent models in this domain is the 
Uncapacitated Facility Location Problem [6] which seeks to determine the optimal locations for 
facilities to minimise operational costs while meeting demand. The UFLP, though effective in various 
applications, has inherent limitations, particularly in its static nature and the assumption of  infinite 
facility capacity. Recent studies have addressed these limitations by introducing dynamic variables and 
considering factors such as demand variability and environmental impact [7-9]. 
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The UFLP has traditionally focused on minimising transportation and facility setup expenses, often 
overlooking the dynamic nature of  demand points over time. For instance, studies by Atta, et al. [10] 
and Srivastava and Jha [7] have highlighted the significance of  incorporating temporal dynamics into 
facility location models to predict better and accommodate future demand. While these studies have 
made considerable strides in improving the UFLP's applicability, they often need to fully integrate 
population growth rates and their impact on waste generation and resource allocation. The challenge 
lies in the model's ability to adapt to these changes while maintaining cost efficiency and service quality, 
an issue that has been partially addressed but has yet to be entirely resolved in recent research [11, 12]. 

One of  the significant strengths of  recent advancements in facility location models is their 
incorporation of  multi-objective optimisation techniques, which allow for a more balanced approach to 
resource distribution. For example, Ghadge, et al. [13] and Pang and Zhou [14] have demonstrated the 
potential of  hybrid models that integrate economic and environmental objectives, offering more 
sustainable solutions in facility location planning. However, these models still need to improve 
scalability and handle large datasets effectively, particularly in urban planning scenarios where 
numerous demand points are highly variable. Additionally, while these models consider environmental 
impacts, they often fall short when it comes to addressing long-term sustainability goals, particularly in 
waste management, where population growth and waste generation rates are critical factors [15, 16]. 

Our research builds on a robust body of  literature on spatial facility location problems [17, 18] with 
significant foundational work laid by Church and Murray [19]. Previous research in spatial 
optimisation, including methodologies for the UFLP, has provided substantial insights into the 
complexities of  facility placement [20, 21]. This work has significantly enhanced our understanding of  
the challenges that are likely to arise, particularly in sustainable waste management [22, 23]. Building 
on these established concepts, we introduce a novel mathematical model that improves the traditional 
UFLP framework [6] by incorporating dynamic factors, including population growth rates and future 
demand projections. 

Unlike prior approaches which have often overlooked these critical variables, our model optimises 
landfill placement by balancing short-term operational efficiency with long-term cost-effectiveness 
while accounting for the environmental impact [24]. This advancement seeks to address the gaps 
identified in existing UFLP models, which typically need to account for changes in population over 
extended periods. To validate our model, we conducted a focused case study in Cape Coast Metropolis, 
Ghana, examining twenty-three distinct suburbs and seven potential landfill sites. This case study 
provides valuable insights into the interactions between facility placement, resource distribution, and 
long-term cost efficiency, allowing for a comprehensive analysis of  trade-offs between facility count, 
travel distances, and operational costs [25]. 

By addressing these challenges, our research aims to provide a significant contribution to the field 
by offering a robust and adaptable framework for optimising landfill placement [26]. Our model is 
poised to guide policy decisions regarding future waste management infrastructure needs, optimising 
resource allocation [26] while minimising environmental impact. As sustainable waste management 
remains a critical global issue for urban centres, this study introduces a novel approach that can 
substantially improve landfill placement strategies, significantly contributing to theory and practise. 
The novel contribution of  the current study lies in its development of  a Modified Uncapacitated 
Facility Location Problem (MUFLP) model that explicitly integrates population growth rates and 
temporal dynamics into the decision-making process. It is undeniable and inevitable that waste is 
generated wherever there is a human presence [27]. With the expansion of  human populations and the 
rise of  affluent societies, waste production concurrently increases over time [28]. Population growth 
and the passage of  time are notable factors that contribute significantly to waste generation [29]. A 
study by Srivastava and Jha [7] in Prayagraj, India, revealed a significant correlation between 
population growth, employment, household size, and waste generation rates. This correlation 
underscores the critical role the population growth plays in the gradual accumulation of  waste over 
time [30]. 
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Unlike traditional models which assume that the demand points are static, the MUFLP model 
projects future waste generation at each demand point, allowing for more accurate and sustainable 
facility placement over time. This approach addresses the gaps identified in previous studies and 
enhances the model's applicability in real-world scenarios where demand is expected to grow and evolve. 
By incorporating these dynamic factors, the MUFLP model provides a more robust framework for long-
term facility location planning, ensuring that facilities are optimally positioned to meet current and 
future demand while minimising costs and the environmental impact [31]. This advancement marks a 
significant leap in facility location optimisation, providing a more comprehensive solution to the 
challenges highlighted in the existing literature. 

The remainder of  the manuscript is structured as follows: Section 2 provides an overview of  
previous research on the UFLP model, focusing on valuable contributions to the field. Section 3 deals 
with the research design and methodology while Section 4 deals with the materials and methods 
employed in the study. Section 5 presents the outcomes derived from the MATLAB implementations. 
Section 6 offers a thorough analysis and discussion of  the simulations, providing valuable insights into 
the model's performance and confirming the validity of  our findings. Section 7 explores the implications 
of  implementing the UFLP models in this context. Finally, Section 8 summarises the study's main 
findings, while Section 9 offers observations and recommendations to improve the model's effectiveness 
in various geographical contexts. 

 

2. Literature Review 
Numerous models and algorithms have been effectively employed to address the complexities of  

facility location within waste management, as evidenced by the existing literature. These studies often 
prioritise minimising transportation costs, facility setup expenses, and other relevant factors [15]. For 
example, Pires, et al. [16] proposed a linear programming framework for single and multi-objective 
problems in sustainable waste management, focusing on challenges like vehicle routing and 
transportation. Similarly, Olapiriyakul, et al. [9] introduced an optimisation model for waste 
management network design, integrating environmental and social impact measures with economic 
objectives. 

Ghadge, et al. [13] emphasised the importance of  finding sustainable facility location solutions for a 
closed-loop distribution network, particularly in the uncertain environment of  online retailing, where 
there is an increasing need to reduce carbon emissions. Their study uses a case study approach to 
improve distribution centre location decisions for single and double hub scenarios. It proposes a hybrid 
approach that combines the centre of  gravity method with mixed-integer programming [32]. The 
model, validated with empirical data from a major UK retail distributor network, suggests adopting a 
two-hub facility location strategy to mitigate emerging risks and disruptions in the supply chain [33]. 

Despite the advancements in this research area, the existing approaches have neglected to consider 
population growth rate and time as factors influencing waste generation. This omission presents a 
significant challenge. As Srivastava and Jha [7] highlighted, population growth directly correlates with 
increased waste generation. As emphasised in the work of  Adeleke and Olukanni [12] ignoring this 
dynamic can lead to inadequate waste management infrastructure, as improper facility placement due to 
underestimation of  future waste volumes becomes a significant issue. Additionally, waste collection 
routes, according to De Armas, et al. [34] may become inefficient as populations grow and waste 
generation patterns shift and ultimately, these issues can increase operational costs [35]. 

To address this gap, we propose a multi-step approach. The first step involves leveraging existing 
Uncapacitated Facility Location Problem (UFLP) models, such as those presented by Atta, et al. [36] 
and Zhang, et al. [37] and using real-world data to identify optimal facility locations based on proximity 
to population centres. This initial step provides valuable insights into resource allocation and service 
optimisation. However, recognising the limitations of  the existing UFLP model - particularly its 
oversight of  the population growth rate and temporal dynamics - necessitates a refinement phase. This 
phase involves adapting the UFLP model to incorporate variables and constraints that explicitly address 
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these overlooked dimensions, specifically integrating population growth rate projections and temporal 
considerations into the model’s framework, and builds upon the work of  Ortiz-Astorquiza, et al. [38] 

who explored multilevel Uncapacitated 𝑝-location problems. 
The proposed adjustments promise to enhance the model’s predictive accuracy, allowing for more 

precise estimations of  waste generation volumes over time [39] which will enable stakeholders to 
anticipate future waste management needs and allocate resources accordingly. Moreover, by factoring in 
population growth rate and temporal dynamics, the refined model facilitates proactive decision-making, 
reducing the likelihood of  underutilised or inadequately positioned facilities, as encountered in the study 
by Asgari, et al. [11]. Furthermore, these modifications are expected to yield broader benefits beyond 
operational enhancements. By accommodating population growth rate and temporal considerations, the 
refined UFLP model can optimise cost-effectiveness, bolster service quality [35] and mitigate ecological 
concerns. The enhanced predictive capabilities of  the model empower decision-makers to proactively 
address environmental sustainability goals, aligning waste management strategies with broader 
ecological imperatives. 

Empirical applications demonstrate the effectiveness of  spatial optimisation models enabled by 
Geographic Information Systems (GIS) technology. These models help minimise representation errors 
and better align with real-world demand distributions.  

This integration offers a robust framework for decision-makers in facility location planning, 
addressing the difficulties of  accurately representing continuous demand [40]. 

Additionally, Torkayesh, et al. [41] developed an integrated decision-making model for selecting 
disposal locations for medical waste. Their model incorporates GIS, the Best-Worst technique, and the 
Measurement of  Alternatives and Ranking Using the Compromise Solution (MARCOS) technique. The 
Best-Worst technique is used to build GIS suitability maps, which analyse location criteria, while the 
MARCOS approach prioritises eight prospective dump sites, considering environmental factors. 

A comprehensive examination of  the literature reveals that various models and algorithms have 
successfully tackled the complexities of  facility location problems. Historically, the primary focus when 
solving Uncapacitated Facility Location Problems (UFLPs) has been minimising transportation costs, 
facility setup expenses, and other relevant factors, which are indeed crucial [15].  

The existing UFLP model, as discussed by De Armas, et al. [34] overlooks two crucial variables: 
population growth rate and temporal dynamics. These factors must be considered to avoid 
complications, particularly when managing a growing customer base. As the customer base expands, it 
becomes increasingly important to develop distinct facility layouts and service strategies to address 
challenges such as improper facility placement, inefficient service delivery, and rising expenses [42]. 
Therefore, incorporating these variables into the UFLP model could lead to more accurate predictions 
and efficient waste management strategies. 

A multifaceted approach is necessary to bridge this gap in waste management optimisation. The 
first step involves applying the established UFLP model to empirical data derived from real-world 
contexts. This empirical grounding facilitates the identification of  optimal facility locations by assessing 
their proximity to settlements and population centres. 
 

3. Research Design and Methodology 
3.1. Research Design 

This study employs quantitative research design, utilising mathematical modelling and 
computational analysis to address the UFLP in the context of  sustainable waste management. The 
research is structured to build existing models while incorporating new variables, such as population 
growth and temporal dynamics, which are critical for long-term planning in waste management. This 
approach aligns with the current trends in facility location research, where integrating dynamic 
variables is increasingly recognised as essential for optimising resource allocation in changing 
environments [43, 44]. 
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3.2. Research Questions 
The following research questions will guide our study: 

1. How can the traditional UFLP model be enhanced to better accommodate the dynamic 
nature of  waste generation, which is influenced by population growth and temporal factors? 

2. What is the optimal configuration of  landfill sites in the Cape Coast Metropolis, Ghana, 
that balances cost-efficiency with sustainability over a 50-year planning horizon? 

3. How does the inclusion of  population growth rates and temporal dynamics impact the 
effectiveness and cost-efficiency of  waste management facilities? 

 
These questions are designed to explore the practical applications of  advanced mathematical models 

with regard to optimising waste facility locations and to evaluate the long-term sustainability of  these 
solutions. Such inquiries reflect the growing consensus in the literature that facility location models 
must evolve to address the complexities of  real-world applications, particularly in the context of  
sustainability [7, 8]. 
 
3.3. Hypotheses 
Based on the research questions, the study tests the following hypotheses: 

1. H1: Including population growth rates and temporal dynamics in the UFLP model will result in 
more optimal landfill placements than the traditional UFLP model. 

2. H2: The Modified Uncapacitated Facility Location Problem (MUFLP) model will demonstrate 
greater cost-efficiency over time by reducing the need for facility reallocation and minimising 
operational costs. 

3. H3: Considering future demand growth, a spatially optimised configuration of  landfill sites will 
lead to a more balanced and sustainable distribution of  waste management resources across the 
Cape Coast Metropolis. 

 
These hypotheses are designed to test the proposed model's effectiveness and applicability in real-

world waste management scenarios. The focus on cost-efficiency and sustainability is consistent with 
previous research, which emphasises the importance of  these factors in facility location optimization 
[15, 16]. 
 
3.4. Methodology 

The methodology for this study involves several key steps: 
Model Development: 
A Modified Uncapacitated Facility Location Problem (MUFLP) model is developed, incorporating 

population growth projections and temporal dynamics. This model is based on the traditional UFLP 
framework but enhanced to address the specific challenges of  sustainable waste management. This 
approach builds on the work of  Yao and Murray [18] who have emphasised the need for models that 
can adapt to future changes in demand. 
 
3.4.1. Data Collection: 

Data on population growth rates, waste generation patterns, and geographic information from the 
Cape Coast Metropolis are collected, including historical data and projections over a 50-year period, as 
provided by the Ghana Statistical Service and other relevant sources. Recent studies have highlighted 
the importance of  accurate and comprehensive data in facility location modelling, underscoring the need 
for reliable inputs to achieve robust model outcomes [9]. 
 
3.4.2. Computational Analysis: 

The MUFLP model is implemented using MATLAB, in which various scenarios are simulated to 
determine the optimal number and locations of  landfill sites. The model's performance is evaluated 
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against the baseline UFLP model using key performance indicators such as cost minimisation, travel 
time reduction, and adaptability to changing conditions. This computational approach is consistent with 
the methods used in contemporary facility location research, which often relies on advanced software 
tools for simulation and optimization [6]. 
 
3.4.3. Validation and Comparison: 
The results from the MUFLP model are compared with those of  the traditional UFLP model. The 
comparison focuses on each model's cost-effectiveness, operational efficiency, and long-term 
sustainability, validating the hypotheses outlined earlier. This comparative analysis is crucial for 
understanding the relative advantages of  different modelling approaches, as discussed in the literature 
by Zhang, et al. [37]. 
 
3.4.3. Sensitivity Analysis: 

A sensitivity analysis assesses the model's robustness under different population growth and waste 
generation assumptions. This analysis helps identify potential risks and uncertainties in the model's 
predictions. Sensitivity analysis in facility location research is well-documented, particularly with regard 
to its role in enhancing the reliability and applicability of  model outcomes [40, 44]. 

 
4. Materials and Methods 

This study adopts a comprehensive and systematic approach to improving waste management 
practises in the Cape Coast Metropolis (CCM). The methodology is designed to address the complex 
challenges associated with waste management, focusing on optimising facility location, enhancing waste 
collection efficiency, and promoting active community involvement. The following subsections outline 
the methods and strategies employed to achieve these objectives. 
 
4.1. Integration of  the Improved UFLP Model 

A vital component of  this research involves the application of  an enhanced Uncapacitated Facility 
Location Problem (UFLP) model, which is referred to as the Modified Uncapacitated Facility Location 
Problem (MUFLP) model. This model represents a significant advancement over traditional UFLP 
approaches by incorporating dynamic variables such as population growth projections provided by the 
Ghana Statistical Service. Accurate predictions are crucial for forecasting future demand points and 
waste generation volumes across CCM. 

The MUFLP model incorporates precise data on demand point locations, enabling a facility 
placement to be more accurately aligned with current and future waste management needs. Unlike 
traditional UFLP models, the MUFLP model also considers temporal changes in waste distribution 
patterns. By accounting for these dynamic factors, the MUFLP model aims to optimise landfill 
placement in the short and long term, ensuring cost-effectiveness and operational efficiency. 

A comparative analysis with a baseline UFLP model will be conducted to evaluate the effectiveness 
of  the MUFLP model. This assessment will focus on key performance indicators (KPIs) such as cost 
minimisation, travel time reduction, and the model's adaptability to evolving waste generation patterns. 
The evaluation will provide valuable insights into the strengths and limitations of  the MUFLP model, 
establishing a solid foundation for its practical application in waste management scenarios. 
 
4.2. Spatial Analysis and Optimisation 

Efficient waste management requires a deep understanding of  the spatial dynamics within CCM. To 
achieve this, the MUFLP model will be employed to strategically place at least five landfill facilities, 
ensuring comprehensive coverage of  all twenty-three demand points within the metropolis. Strategic 
placement of  waste management resources is crucial for achieving a balanced distribution and 
minimising operational costs related to waste collection and disposal. 
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Extensive spatial analysis will use historical waste generation data to identify patterns and trends 
that can inform facility placement decisions. Additionally, the capabilities of  waste collection trucks will 
be thoroughly assessed, considering factors such as load limits, fuel efficiency, and maintenance 
schedules. Travel speeds within CCM will also be analysed to determine the optimal distance threshold 
for placing facilities relative to demand points. 

This spatial analysis and optimisation process aims to minimise the distance travelled by waste 
collection vehicles, thereby reducing fuel consumption, emissions, and operational expenses. The study 
aims to optimise waste collection operations by strategically locating landfill facilities and promoting a 
more sustainable waste management system. 
 
4.3. Community Engagement and Education 

Community engagement is vital for establishing a foundation of  sustainable waste management 
practises. This study will introduce a range of  community engagement and education initiatives to raise 
awareness about waste reduction, composting, and proper waste segregation practises. These 
programmes equip residents with the knowledge and tools to actively participate in waste management 
efforts. 

This study will collaborate with local schools, community centres, and non-governmental 
organisations (NGOs) to disseminate information and organise training sessions. The educational 
content will be tailored to address the specific needs and challenges of  different communities within 
CCM, focusing on promoting practises that align with the principles of  a circular economy. 

Furthermore, partnerships with local recycling facilities will be established to create a streamlined 
process for collecting, sorting, and processing recyclable materials. By integrating these efforts into a 
comprehensive waste management strategy, this study aims to minimise the amount of  waste in 
landfills and maximise the recovery of  valuable resources. 
 
4.4. Evaluation of  Social Impact 

The primary objective of  this study is to ensure equitable distribution of  waste management 
services across all communities within CCM. A thorough social impact assessment (SIA) will be 
conducted to analyse the potential impacts of  waste management practises on various population 
segments, focusing on marginalised and vulnerable communities. 

The SIA will include focus group discussions and stakeholder interviews to gather qualitative data 
on the social aspects of  waste management. These discussions will provide valuable insights into 
residents' perceptions, concerns, and needs, helping to identify potential disparities in access to waste 
management services. The results of  the SIA will inform the development of  plans to address any 
identified inequities and ensure that all communities benefit fairly from waste management initiatives. 

In addition to qualitative methods, quantitative approaches such as surveys and statistical analyses 
will be employed to assess the social impact of  waste management practises. This dual approach will 
provide a comprehensive understanding of  the social implications of  facility placement and waste 
collection strategies, ensuring that the study's recommendations are sustainable from a social and 
economic perspective. 
 
4.5. Data Security and Management 

Given the importance of  the data collected during this study, robust data security measures will be 
implemented to protect participants’ information and maintain the integrity of  the research process. 

Advanced security protocols, including cloud-based storage with encryption and 𝑘-anonymity 
techniques, will be utilised to prevent unauthorised access and ensure the confidentiality of  sensitive 
data. 

The collected data will include variables such as Euclidean distances between suburbs, projected 
costs for establishing disposal sites, and demographic information. Each suburb will be assigned a 
unique MATLAB code to facilitate effective data management and analysis within the computational 
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framework. This systematic approach will streamline data analysis, allowing for precise conclusions and 
well-informed recommendations. 

Regular audits of  data storage systems, secure backups, and strict access controls will be enforced to 
safeguard sensitive information and restrict access to authorised personnel only. 
 
4.6. Data Collection and Analysis 

Data collection will involve a detailed examination of  the twenty-three suburbs within CCM, using 
rigorous criteria to ensure that the collected data are accurate and representative. Key data points will 
include distances measured along road networks, projected costs for establishing waste disposal sites, 
and historical waste generation patterns. 

MATLAB will be the primary computational tool to process and analyse the spatial data. This 
software's advanced capabilities allow for intricate data manipulation and visualisation. Models will be 
created in MATLAB to examine the spatial relationships between demand points and potential landfill 
sites, enabling the determination of  optimal and cost-effective facility locations. The analysis will also 
consider traffic patterns, road conditions, and population density to ensure the final recommendations 
are practical and sustainable. 

This comprehensive data collection and analysis approach addresses the challenges of  representing 
and understanding spatial relationships in waste management. By integrating spatial analysis with 
advanced modelling techniques, this study aims to establish a robust framework for optimising facility 
placement and improving the overall effectiveness of  waste management systems within CCM. 

Overall, the methodology outlined above represents a comprehensive approach to waste 
management. It combines advanced modelling, spatial analysis, community engagement, social impact 
assessment, and meticulous data management practises to ensure that the study's findings are 
scientifically robust and practically implementable. The goal is to provide valuable insights and 
recommendations for enhancing waste management practises in the Cape Coast Metropolis. 
 
4.6.1. Analysis of  Table 1:  

 Table 1 lists the settlements in CCM that are designated demand locations for waste 
management services. A MATLAB code, a label, and the settlement name identify each demand point. 
Identifying and tagging these demand spots is crucial for future research and modelling stages, which 
will use spatial optimisation techniques to establish the best locations for waste management facilities.  
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Table 1.  
Considered settlements (demand points). 

Demand Points MATLAB Code Demand Point Label Demand Point Name 

8 A Brabedzi 
9 B Efutu Mampong 

7 C Efutu 
14 D Brimsu 

1 E Krofofordo 
16 F Nyamoa 

19 G Amoyaw 
2 H Kakumdo 

4 I CCTU 

10 J Akotokyere 
11 K Kwaprow 

20 L Abura 
5 M Nkanfoa 

22 N Third Ridge 
15 O Pedu 

23 P UCC 
12 Q Apewosika 

6 R Adesadel 

13 S Kotokuraba 
21 T Aboom 

18 U Ekon 
3 V Amanful 

17 W OLA 

 
 The demand points in the CCM span a large geographic region, highlighting the need for a well-

distributed network of  waste management facilities. The varieties of  the communities involved, ranging 
from densely populated places like "Kotokuraba" (S) and "UCC" (P) to less congested locations like 
"Amoyaw" (G) and "Brabedzi" (A), implies that there will be variable waste generation quantities and 
logistical issues. The spatial distribution of  these demand sites emphasises the significance of  strategic 
facility placement to promote fair access and efficiency with regard to trash collection and disposal [15].  

          By mapping these demand spots, this research can assess each community’s proximity to 
possible facility sites, which is critical for lowering transportation costs and increasing the overall 
efficiency of  the waste management system [16]. Furthermore, identifying the geographical linkages 
between these demand points enables a more nuanced approach to facility siting, thereby improving the 
sustainability and cost-effectiveness of  waste management operations [9].  
Within the geographical area under study, seven potential sites for facilities were identified. These sites 
are labelled as F1 through F7. The estimated costs for establishing these sites, denoted in thousands of  
Ghana cedis, are as follows: [70, 65, 67, 62, 70.5, 69, and 73.5], respectively. Furthermore, the direct 
Euclidean distances between the demand points and the proposed facility sites were determined using 
Floyd’s algorithm, as displayed in Table 2. 
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Table 2.  
The Euclidean distances between pairs of  demand points and between demand points and proposed facility sites. 

S/No. Edges Distance (Meters) 

1 (A, B) 905 
2 (A, C) 980 

3 (A, D) 795 
4 (A, F1) 700 

5 (B, E) 560 
6 (B, F2) 1210 

7 (C, F) 1250 
8 (D, G) 980 

9 (E, H) 1385 

10 (E, J) 1705 
11 (E, F3) 400 

12 (F, G) 1050 
13 (F, F1) 600 

14 (F, F7) 1000 
15 (G, O) 1550 

16 (G, N) 1150 
17 (G, F7) 1200 

18 (H, I) 1685 

19 (H, N) 1785 
20 (H, F6) 1200 

21 (I, L) 1045 
22 (J, K) 905 

23 (J, T) 1845 
24 (J, F4) 980 

25 (K, L) 995 
26 (K, S) 745 

27 (L, M) 685 
28 (L, R) 905 

29 (M, Q) 885 

30 (N, P) 1085 
31 (O, P) 785 

32 (P, V) 1805 
33 (P, F5) 1020 

34 (R, V) 805 
35 (S, U) 845 

36 (S, F4) 600 
37 (T, W) 1205 

38 (U, F5) 900 

39 (V, W) 945 
40 (V, F7) 1120 

41 (W, F4) 1100 

 
4.6.2. Analysis of  Table 2 

Table 2 provides the Euclidean distances between pairs of  demand points and proposed facility sites. 
These distances are pivotal in determining the optimal placement of  waste management facilities, as 
they directly impact transportation costs and the efficiency of  waste collection routes. 

The distances between demand points, such as the 905 metres between "Brabedzi" (A) and "Efutu 
Mampong" (B), highlight the potential for clustering certain settlements around a single facility. 
Clustering can reduce the facilities needed while maintaining adequate service coverage, thus optimising 
operational costs [7]. However, the distance of  1805 - metre between "UCC" (P) and "Amanful" (V) 
suggests that some demand points are relatively isolated, which may necessitate more strategic 
placement of  facilities to avoid service inefficiencies [34]. 
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The Euclidean distances to the proposed facility sites, such as the 700 - metre from "Brabedzi" (A) 
to the potential site F1, provide a preliminary indication of  which facilities may serve specific demand 
points most effectively.  

For instance, the short distance between "Brabedzi" and F1 suggests that this site could be a 
primary facility serving multiple nearby settlements, thereby reducing overall transportation costs [8]. 
Conversely, the longer distances, such as the 1845 metres from "Akotokyere" (J) to "Aboom" (T), may 
require additional facilities or more extensive waste collection routes, increasing operational complexity 
and costs [36]. 
 
4.6.3. Implications and Inferences 

The data presented in these tables have several implications for the design and implementation of  
waste management systems in CCM: 

Proximity and cost efficiency: The Euclidean distances between demand points and facility sites 
indicate that proximity is critical in minimising transportation costs. Facilities should be located closer 
to clusters of high-demand settlements to maximise cost efficiency [15]. 

Facility clustering: Clustering demand points around certain facilities can optimise resource 
allocation, reduce the number of required facilities, and streamline waste collection routes. However, 
care must be taken to ensure the facilities are not overloaded, which could lead to inefficiencies [16]. 

Service coverage: The distances between more isolated demand points suggest a need for either 
additional facilities or enhanced logistical planning to ensure that all areas are adequately serviced. This 
is particularly important in more remote or less densely populated areas where service gaps could occur 
[7]. 

Dynamic modelling: The static nature of Euclidean distances highlights the importance of 
incorporating dynamic factors, such as traffic patterns and population growth, into the facility location 
model. This approach would better account for the temporal changes in demand and the evolving spatial 
distribution of waste generation [9]. 

Environmental impact: The placement of  facilities must also consider the potential environmental 
impact, especially in areas closer to sensitive ecosystems or residential neighbourhoods. A balanced 
approach that integrates environmental considerations with logistical efficiency is essential for 
sustainable waste management [41]. 

Finally, Tables 1 and 2 offer valuable insights into the spatial dynamics of  waste management 
within the Cape Coast Metropolis. The detailed analysis of  these tables underscores the need for a 
strategic approach to facility placement that considers proximity, cost efficiency, service coverage, and 
environmental impact. By leveraging the data provided, the study can inform more effective and 
sustainable waste management practises that are responsive to the unique geographic and demographic 
characteristics of  the region. 
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Figure 1.  
Network representation of  Table 2. 

 
4.6.3. In-depth Discussion on Figure 1 

Figure 1 represents a network visualisation of  the demand points and proposed facility sites based 
on the Euclidean distances presented in Table 2. This network illustrates the spatial relationships 
between the demand points (orange circles) and the proposed facility sites (blue squares) within the 
Cape Coast Metropolis (CCM). By mapping these connections, the figure provides a comprehensive view 
of  how waste management services could be distributed across the metropolis, considering proximity 
and distance as critical factors. Network visualisation is a crucial tool for understanding the spatial 
configuration of  waste management infrastructure within CCM. Each edge in the network represents a 
direct Euclidean distance between two demand points or a demand point and a proposed facility site. 
This visual representation helps to identify clusters of  demand points and their relative proximity to 
potential facilities, which are vital for optimising waste collection routes and reducing operational costs. 

One of  the immediate observations from Figure 1 is the clustering of  demand points around specific 
proposed facility sites. For example, demand points A, C, F, and G are closely linked to the proposed 
facility site F1, with distances ranging from 600 to 1250 metres. This cluster suggests that F1 could 
effectively serve these nearby settlements, making it a strategic location for minimising travel distances 
and transportation costs. This is consistent with findings in the existing literature on facility location 
optimisation [15, 16]. 

Similarly, the proximity of  the demand points I, J, K, and L to facilities F3 and F4 indicate that these 
facilities could be central to servicing a significant portion of  the population in this area. The network 
structure emphasises the importance of  placing facilities that serve multiple nearby demand points, thus 
optimising the coverage area and ensuring efficient resource utilization [7]. 
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The figure highlights specific demand points that are relatively isolated from others and their 
nearest proposed facility sites. For example, demand points W (OLA) and T (Aboom) are situated at the 
periphery of  the network, at relatively long distances (1205 metres and 1100 metres, respectively) from 
their nearest facility site F7. This isolation could pose challenges in service delivery, as longer travel 
distances typically increase fuel consumption, operational costs, and the time required to collect and 
dispose of  waste [9]. 

In such cases, the network suggests a need for more facilities in isolated regions or improved 
transportation infrastructure to reduce the impact of  these longer distances. This observation aligns 
with research that emphasises the importance of  accessibility in facility location models, particularly in 
regions where demand points are widely dispersed [8]. 

The network demonstrates the trade-offs involved in facility placement. While centralising facilities 
can minimise the number of sites required, it can also increase the distance for more isolated demand 
points. Conversely, a more distributed network of facilities could ensure better coverage but at a higher 
operational cost due to the increased number of sites. The network representation thus aids in 
visualising these trade-offs. It supports decision-making by providing a clear picture of how different 
configurations might impact the overall efficiency and sustainability of the waste management system 
[36]. 

Furthermore, the connections between the demand points and facilities underscore the importance 
of  considering current and future demand. The proximity of  multiple demand points to a single facility, 
such as F1, indicates that this site could become a critical hub in the network. However, with careful 
planning incorporating population growth projections and waste generation, this facility could stay 
manageable, leading to inefficiencies and additional infrastructure [34]. 
 
4.6.4. Inferences and Strategic Recommendations 

The network representation provides several strategic insights for optimising waste management in 
the CCM: 

Facility hub centralization: Facilities like F1 and F4, central to several closely situated demand 
points, could serve as hubs that reduce the need for multiple smaller facilities. This centralisation could 
lead to economies of  scale, lowering the per-unit cost of  waste collection and processing. Need for 
Additional Infrastructure: For more isolated demand points, the network suggests a potential need for 
additional facilities or improved logistics to ensure that these areas receive adequate service without 
disproportionately increasing costs. 

Dynamic adaptation: The network highlights the importance of  flexibility in facility placement 
strategies. As population centres grow and shift over time, the network must adapt to maintain 
efficiency. This could involve re-evaluating facility locations periodically and making adjustments based 
on updated data on population growth and waste generation patterns [35]. 

Sustainability considerations: Finally, the network underscores the need to balance operational 
efficiency with environmental sustainability. The network reduces costs by minimising the distances 
between demand points and facilities. It lowers the environmental impact of  waste collection, which is a 
critical consideration in modern waste management practices [41]. 

Figure 1 is a powerful visual tool for analysing the spatial relationships between demand points and 
proposed facility sites within the Cape Coast Metropolis. By illustrating the network of  connections 
based on Euclidean distances, the figure provides critical insights into the potential efficiency and 
effectiveness of  different facility placement strategies. These insights are essential for developing a 
waste management system that is both cost-effective and sustainable and is capable of  meeting the 
needs of  a growing population while minimising its environmental footprint. 
 
4.6.5. Shortest Paths between Demand Points 

The integration of  the Floyd-Warshall algorithm, as depicted in Table 3, plays a pivotal role in 
determining the shortest paths between demand points and the proposed facility sites. The algorithm's 
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ability to efficiently compute the shortest paths in a network, even for large datasets, has been 
instrumental in optimising the facility location problem. The algorithm identifies the most direct routes 
and helps reduce overall travel distances, which is crucial for minimising operational costs and 
improving service delivery in waste management [45, 46]. 
 
Table 3.  
Shortest path matrix between demand points and proposed facility sites. 

Demand Point Label F1 F2 F3 F4 F5 F6 F7 

A 700 2115 1865 4050 3085 5030 4150 

B 1605 1210 960 3145 3880 5660 3245 
C 1680 3095 2845 5030 2250 7545 5130 

D 1495 2910 2660 4845 3030 7360 4945 
E 2165 1770 400 2585 4440 5100 2685 

F 600 2950 4095 5185 1000 4405 6380 
G 1650 1900 3640 4135 1550 3355 5925 

H 3550 2535 1785 1200 4135 3890 4070 
I 5235 4220 3470 2885 5820 5475 3385 

J 3870 3475 2105 4290 7225 3395 980 

K 4775 4380 3010 3505 3825 2490 1345 
L 6280 5265 1200 2510 2830 3485 2340 

M 6455 5960 1885 3195 3515 4170 3025 
N 2800 750 3570 2985 2350 2105 5855 

O 3200 2620 5190 3390 2750 1805 4635 
P 3885 1835 4655 4070 2925 1020 3850 

Q 8885 6835 2770 4080 8520 5055 3910 
R 6595 4445 5420 1605 1925 4390 2850 

S 9325 5125 3755 4250 8605 1745 600 

T 5715 5790 3950 2950 7390 5240 2305 
U 6365 7850 4600 5095 9450 900 1445 

V 5790 3640 5715 800 5240 2825 4050 
W 6635 4585 5155 1745 2065 6490 1100 

 ¢GHS ¢GHS ¢GHS ¢GHS ¢GHS ¢GHS ¢GHS 

Cost of Opening Facility ¢70,000 ¢65,000 ¢67,000 ¢69,000 ¢73,500 ¢70,500 ¢62,000 

 
4.6.6. Problem Definition 

The UFLP is a classical combinatorial optimisation problem that seeks to minimise the total costs 
associated with facility placement and service delivery. The problem involves determining the best 
locations for facilities among several potential sites and assigning demand points to these facilities to 
minimise overall costs. The objective function and constraints outlined in the definition of  the problem, 
ensure that each demand point is served by one facility, and the total cost of  opening facilities and 
servicing demand points is minimised. The problem involves a collection of  potential facility locations 

(𝐼) and a group of  customers (𝐽). Each facility is assigned a non-negative initial cost (𝑓𝑖), and there is a 

non-negative service or connection cost (𝑐𝑖𝑗) among each facility (𝑖 ∈ 𝐼) and each customer or demand 

point (𝑗 ∈ 𝐽). UFLP's primary goal is to minimise the overall cost of  facility openings, including service 
or connection fees, simply by linking each customer or demand point to the closest operational facility. It 
is significant to remember that only one facility can satisfy the demands of  every customer or locality, 
leading to the assumption that every facility has an infinite capacity. The mathematical formulation of  
the UFLP is presented as an integer linear programming model that incorporate  twenty-three demand 
points and seven potential facility sites. This can be achieved by defining the necessary parameters, 
decision variables, constraints, and objective function, as outlined below: 
 
Sets: 

𝐼 = a set of  facilities, where 𝑖 ∈ 𝐼,   𝑖 = 1, 2, 3, … , 7 
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𝐽 = a set of  demand points, where  𝑗 ∈ 𝐽,   𝑗 = 1, 2, 3, … , 23 
 
Parameters: 

𝑥𝑖𝑗 = the cost of  servicing demand point j from facility 𝑖 

𝑓𝑖 = the fixed cost of  opening facility 𝑖 
𝑐𝑖𝑗 - the costs incurred if  customer 𝑗 is served from facility 𝑖 
 
Variables: 

𝑥𝑖𝑗 = Binary variable: 

𝑥𝑖𝑗 = 1, if  facility 𝑖 serves demand point 𝑗 

𝑥𝑖𝑗 = 0 otherwise 

𝑦𝑖 = Binary variable: 

𝑦𝑖 = 1, if  facility 𝑖 open 

𝑦𝑖 = 0 otherwise 
 

The mathematical formulation of  the UFLP as an integer linear programming model provides a 
robust framework for addressing the complexities of  facility location in waste management. The main 
objective is to minimise the overall expenditure. The constraints ensure that each demand point is 
served by exactly one facility, and only open facilities can provide service. This approach prevents 
unnecessary overlaps in service coverage and helps maintain efficient resource distribution. 
 
Objective Function 
Minimise: 

                    ∑ 𝑓𝑖𝑦𝑖

7

𝑖=1

+ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

23

𝑗=1

7

𝑖=1

                                                                                                                                   (1) 

 
Constraints 
Each demand point is served.  

                                                         ∑ ∑ 𝑥𝑖𝑗

23

𝑗=1

7

𝑖=1

= 1                                                                                                                (2) 
 

                              𝑥𝑖𝑗 ≤ 𝑦𝑗 ,    ∀  𝑖 ∈ 𝐼, 𝑗 ∈

𝐽                                                                                                                      (3) 
                              𝑥𝑖𝑗 𝜖 {0,1}              𝑖 = 1,2, … ,7 and  𝑗 =

1,2, … , 23                                                                      (4) 

                              𝑦𝑖 𝜖 {0,1}              𝑖 =
1,2, … ,7                                                                                                            (5) 
                       𝑥𝑖𝑗 ≥ 0, and  𝑦𝑖 ≥ 0                                                                                                                           (6) 
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4.6.7. Detailed explanation of  the constraints: 

Constraint (2) ensures that each demand point 𝑗 is served by exactly one facility 𝑖. Here, 𝑥𝑖𝑗 is a 

binary variable indicating whether facility 𝑖 serves demand point 𝑗 (1 if  it does, 0 if  it does not). The 

double summation ensures that for each demand point 𝑗, there is exactly one facility 𝑖 assigned to serve 
it. 

Constraint (3) indicates that 𝑥𝑖𝑗 (whether facility 𝑖 serves demand point 𝑗) can only be 1 if  the 

facility 𝑖 is open (𝑦𝑖 = 1). If  facility 𝑖 is not open (𝑦𝑖 = 0), 𝑥𝑖𝑗 must be 0. 

Constraint (4) specifies that the variables 𝑥𝑖𝑗 are binary. This means that for each combination of  𝑖 

and 𝑗, 𝑥𝑖𝑗   can only take the value of  0 or 1. This enforces the decision of  whether a particular facility 𝑖 

serves a particular demand point 𝑗 as an all-or-nothing decision. 

Constraint (5) specifies that the variable 𝑦𝑖 is also binary. This means that for each facility 𝑖, 𝑦𝑖 can 
only take the value of  0 or 1, indicating whether the facility is opened or closed. 

Constraint (6) ensures that the variables 𝑥𝑖𝑗   and 𝑦𝑖 are non-negative. Given that 𝑥𝑖𝑗   and 𝑦𝑖 are 

already defined as binary variables (0 or 1), this constraint is typically redundant but ensures the non-
negative nature of  the variables explicitly. 

This formulation allows the determination of  the best facility location(s) to satisfy the demands 
from various points while considering the costs of  both opening the facilities and serving the demands 
points from those chosen facilities under the following assumptions: 

 
The UFLP model operates under the following assumptions: 

1. The maximum number of  facilities to be opened is limited to five, which ensures that 
the twenty-three demand points are evenly distributed among the opened facilities across the 
study area. 
2. Each opened facility possesses unlimited capacity and is required to serve up to but not 
more than five demand points. 
3. Each demand point must be exclusively served by a single facility to prevent overlap in 
service coverage. 
4. The optimal solution is attained when assumptions 1, 2 and 3 are all satisfied. 

 

5. Results 
5.1. MATLAB Coding on the Standard UFLP Model 

We used the data from Table 3 to implement the current UFLP model in MATLAB. The following 
section presents the pseudocode used in MATLAB for simulating the UFLP with real-life data: 
 
5.2. The pseudo codes for the MATLAB model for the existing UFLP Model. 

1. Define the data: 
   - numFacilities = 7  // Number of  potential facility locations 
   - numCustomers = 23  // Number of  customers 
   - fixedCosts = [70000, 65000, 67000, 62000, 70500, 69000, 73500]  // Fixed costs for opening 

each facility 
   - transportCosts = [ 
       [700, 2115, 1865, 4050, 3085, 5030, 4150], 

       [1605, 1210, 960, 3145, 3880, 5660, 3245], 
       ...  // Complete with other rows of  transport costs 
     ]  // Transport costs for serving each customer from each facility 

2. Define the proximity of  each customer to each facility: 
   - proximity = [ 
       [700, 0, 0, 0, 0, 0, 0], 
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       [0, 1210, 0, 0, 0, 0, 0], 
       ...  // Complete with other rows of  proximity data 
     ]  // Proximity matrix indicating distances (or zero if  not applicable) 
3. Create decision variables: 
   - openFacilities = integer variable array of  size 7 with bounds [0, 1] 
     // Binary variables to indicate if  a facility is open (1) or not (0) 
   - serveCustomer = integer variable array of  size 23x7 with bounds [0, 1] 
     // Binary variables to indicate if  a customer is served by a facility (1) or not (0) 
4. Create the problem: 
   - problem = optimization problem object 
5. Add objective function: 
   - problem.Objective = sum(fixedCosts * openFacilities) + sum(sum(transportCosts * 

serveCustomer)) - sum(sum(proximity * serveCustomer)) 
     // Minimize the total cost, including fixed costs, transport costs, and proximity benefits 
6. Add constraints: 
   - For each customer i from 1 to 23: 
     - Add constraint: sum(serveCustomer[i, :]) == 2 
       // Ensure each customer is served by exactly 2 facilities 
   - For each customer i from 1 to 23 and each facility j from 1 to 7: 
     - Add constraint: serveCustomer[i, j] <= openFacilities[j] 
       // Ensure a customer can only be served by an open facility 
7. Define the maximum allowed distance or travel time: 
   - maxDistance = 600  // Replace with the actual maximum allowed distance 
8. Add maximum distance constraints: 
   - For each customer i from 1 to 23 and each facility j from 1 to 7: 
     - Add constraint: serveCustomer[i, j] * proximity[i, j] <= maxDistance 
       // Ensure the distance to serve a customer does not exceed the maximum allowed distance 
9. Solve the problem: 
   - solution = solve(problem) 
     // Solve the optimization problem using an appropriate solver 
10. Display the open facilities: 
    - openFacilities = solution.openFacilities 
    - Print 'Open facilities:' and the indices of  open facilities (those with value 1) 
      // Iterate through openFacilities to find and print the indices of  open facilities 
11. Display the customers each facility serves: 
    - For each facility j from 1 to 7: 
      - If  openFacilities[j] == 1: 
        - Print 'Facility j serves customers:' 
        - Print the indices of  customers served by this facility (where serveCustomer[i, j] == 1) 
          // Iterate through serveCustomer to find and print the indices of  customers served by each 

open facility. 
 
5.3. Simulation of  the Existing UFLP 

The initial analysis using the traditional Uncapacitated Facility Location Problem (UFLP) model 
provided insights into the optimal placement of  waste management facilities based on current demand. 
The model identified five facility locations collectively serving all 23 demand points within the Cape 
Coast Metropolis. However, the model's output revealed several discrepancies with the underlying 
assumptions. Notably, the UFLP model suggested that multiple facilities serve more than five demand 
points, with some demand points being served by more than one facility, thereby violating the 
exclusivity requirement. 
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For example, the model identified Facility F2 to serve ten demand points, exceeding the assumed 
capacity. Similarly, Facility F7 served 11 demand points, indicating that while the UFLP model 
effectively minimised operational costs (achieving a minimum cost of  ¢GHS430,940.00), it was not fully 
compliant with the model's constraints, suggesting that the cost-effective solution may not be optimal in 
practise. This observation aligns with findings from previous studies, where UFLP models have been 
criticised for their limitations in handling constraints related to service exclusivity and facility capacities 
[8, 36]. 
 
Table 4.  
Output of  MATLAB coding of  the existing UFLP Model. 

Opened Facility Demand Points Served Optimal Minimum Cost 
F2 1, 2, 3, 4, 5, 6, 7, 14, 15, and 16  

¢GHS430,940.00 F3 1, 2, 3, 4, 5, 6, 8, 10, 12, 13, and 17 

F4 8, 9, 18, 20, 22, and 23 
F6 7, 11, 14, 15, 16, 19, 21, and 22 

F7 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, and 23 

 

 
Figure 2. 
Network of  shortest paths between demand points and selected facilities 

 
5.4. Discssion on Table 2 

Figure 2 shows the shortest path network between various demand points and the facilities opened 
through the optimisation process using the Uncapacitated Facility Location Problem (UFLP) model. 
The figure shows a visual representation of  the network, highlighting the connections between the 23 
demand points and the selected optimal facilities (F2, F3, F4, F6, and F7). 
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5.5. Key Observations from the Network 
5.5.1. Distribution of  Facilities: 

The network depicts how the demand points connect to the nearest open facilities. Facility F2, wich 
is centrally located within the network, serves a large number of  demand points, including B (Efutu 
Mampong), C (Efutu), and H (Kakumdo), among others. This central position underscores F2's strategic 
importance in managing waste for the central part of  the metropolis. Facility F7, which is positioned on 
the eastern side of  the network, caters to demand points such as J (Akotokyere), K (Kwaprow), and L 
(Abura). F7's location helps balance the load, ensuring that the eastern part of  the metropolis receives 
adequate service. 
 
5.5.2. Shortest Paths and Efficiency: 

The dashed lines in the network represent the shortest paths calculated between the demand points 
and their respective facilities. These paths are critical for minimising transportation costs and 
operational inefficiencies. For example, the shortest path from demand point A (Brabedzi) to Facility F1 
is only 700 metres, significantly reducing the logistical costs associated with waste collection and 
transportation in that region. Similarly, the connection between demand point Q (Apewosika) and 
Facility F3 reveals a longer route than others, indicating potential transportation cost and time 
challenges. 
 
5.5.3. Geographical Coverage: 

The facilities' geographical spread ensures comprehensive coverage across the metropolis. For 
example, Facility F5, located on the periphery, serves demand points farther from central areas, such as 
V (Amanful) and W (OLA). This strategic placement helps reduce the strain on centrally located 
facilities and promotes an equitable distribution of  waste management resources. 
 
5.5.4. Potential for Optimisation: 

While the network appears to be well-optimised, there are still areas for potential improvement. For 
instance, the connection between demand point S (Kotokuraba) and Facility F6 is relatively long 
compared to other connections, suggesting a need to reassess F6's location or routing strategy to 
minimise costs further. 
 
5.5.5. Implications of  the Network Analysis 

The network illustrated in Figure 2 has several important implications for waste management in the 
Cape Coast Metropolis: 

• Operational Efficiency: The network reduces operational costs by minimising distances 
between demand points and facilities, including fuel consumption and vehicle wear and tear. This 
efficiency is critical in the context of  budget constraints. 

• Environmental Impact: Shorter transportation routes cut costs and reduce the carbon 
footprint associated with waste collection. They also align with broader environmental 
sustainability goals and mitigate the negative environmental impacts of  waste management. 

• Service Reliability: The overlap in service areas and the built-in strategic redundancy 
enhance the waste management system's reliability. In case of  a facility failure or temporary 
closure, nearby facilities can absorb the load without significantly disrupting service. 

• Future Planning: The network analysis provides valuable insights into urban planning and 
infrastructure development. Understanding the current load and service areas helps city planners 
anticipate future needs and decide where to invest in additional facilities or infrastructure 
upgrades. 

Figure 2 is a powerful tool for visualising the outcomes of  the UFLP model and understanding the 
spatial dynamics of  waste management in the Cape Coast Metropolis. The network highlights the 
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current state of  facility distribution and service coverage and identifies potential areas for further 
optimisation. By ensuring that all demand points efficiently connect to the nearest open facilities, the 
network contributes to a more sustainable, cost-effective, and reliable waste management system for the 
city. 
 
5.6. Proposed Modified Version of  the UFLP (MUFLP) 

We aim to enhance the existing UFLP model by incorporating two new parameters: the population 

growth rate (𝑔𝑗) of  the demand point and the time factor (𝑡) based on the same assumptions as 

enumerated earlier. This modification will facilitate the estimation or projection of  future waste 
generation at the demand points based on their current waste generation rates, ensuring alignment with 

the study's core assumptions. To achieve this modification, we will introduce a new parameter, 𝑤𝑗, which 

represents the projected waste generation at demand point 𝑗 after a duration period of  𝑡 years, into the 

standard UFLP model objective function. The parameter 𝑤𝑗 will be defined as:  

                              𝑤𝑗 = 𝑊𝑗 ∗ (1 + 𝑔𝑗)
𝑡
                                                                                                     (7)    

 
The objective of  the MUFLP model is to minimise the total cost, which includes the fixed costs of  

opening facilities and the costs of  serving the projected waste generation with the aim of  aligning the 
model more closely with the study's assumptions. This way, the model will select the facility locations 
based on the future demand for waste generation rather than the current demand for waste generation.  
We therefore formulate the MUFLP as follows: 
 
Minimise  

∑ 𝑓𝑖𝑦𝑖

7

𝑖=1

+ ∑ ∑ 𝑐𝑖𝑗𝑤𝑗𝑥𝑖𝑗

23

𝑗=1

7

𝑖=1

                                                                                                                                        (8)  

 
Subject to:  

∑ 𝑥𝑖𝑗 =𝑖𝜖𝐼

1,         ∀ 𝑖𝜖𝐼                                                                                                                                              (9)                            
𝑥𝑖𝑗 ≤ 𝑦𝑖                ∀ 𝑖𝜖𝐼, 𝑗𝜖𝐽                                                                                                                            (10)                  

𝑥𝑖𝑗𝜖{0,1}               ∀ 𝑖𝜖𝐼, 𝑗𝜖𝐽                                                                                                                    (11)                

𝑦𝑖𝜖{0,1}                 ∀ 𝑗𝜖𝐽                                                                                                                                          (12)                        
         𝑤𝑗 >

0                      ∀ 𝑖𝜖𝐼                                                                                                                                        (13)                       
Where: 

𝐼  - the set of  locations for the facilities (sources),   

𝐽  - the set of  clients/demand points,  

𝑓𝑖 - the fixed costs for installing facility 𝑖,  
𝑐𝑖𝑗 - the cost (distance) incurred if  customer 𝑗 is served from facility 𝑖,  

𝑦𝑖  - the binary variable will be 1 if  location 𝑖 is in use and 0 if  otherwise,  

        𝑥𝑖𝑗 - the binary takes the value of  1 if  customer 𝑗 is served from facility 𝑖  and 0 if    otherwise,  

𝑛   - number of  facilities, 𝑑𝑗 - the population of  demand 𝑗, 

𝑊𝑗 - current waste generation at demand point 𝑗,  

𝑤𝑗 - projected waste generation at demand point 𝑗,  

𝑡   - number of  years into the future we want to plan,  

𝑔𝑗  - the population growth rate of  demand point 𝑗 
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5.7. Discussion of  the Proposed Modified Version of  the UFLP (MUFLP) 
The introduction of  the Modified Uncapacitated Facility Location Problem (MUFLP) model marks 

a significant improvement over the traditional UFLP by integrating dynamic factors such as population 
growth and temporal changes. This section discusses the proposed modifications, supported by the 
results from the MATLAB implementation, and highlights the implications and inferences drawn from 
the findings. The traditional UFLP model focuses on minimising the costs associated with facility 
location and service provision based on current demand. However, this approach may need to pay more 
attention to future changes in demand driven by population growth and other temporal dynamics. The 
MUFLP model addresses this limitation by introducing two key parameters: the population growth rate 

𝑔𝑗 at each demand point and the time factor 𝑡, which projects future waste generation. The projected 

waste generation at demand point 𝑗 after 𝑡 years, denoted as 𝑤𝑗, is calculated using the formula 𝑤𝑗 =

𝑊𝑗 ∗ (1 + 𝑔𝑗)
𝑡
where 𝑊𝑗 is the current waste generation rate. This adjustment allows the model to 

account for future demand when selecting facility locations, ensuring that the facilities remain optimally 
placed over time. 
 
5.8. Implications of  the MUFLP Model 

Future-proofing Facility Locations: 
The primary advantage of  the MUFLP model is its ability to future-proof  facility locations. By 

considering projected increases in waste generation due to population growth, the model ensures that 
facilities will not become inadequate or overburdened as demand increases over time. This is particularly 
important in rapidly growing urban areas, where static models may fail to meet changing needs [7, 10].  
 
5.9. Minimisation of  Long-Term Costs: 

The results indicate that while the initial costs of  establishing facilities under the MUFLP model 
may be higher, the long-term operational costs are minimized due to better alignment between facility 
capacity and demand. For example, the optimal cost at year 50 will be significantly higher than that of  
year 5, reflecting the increased demand that facilities need to manage (see Table 5). However, these costs 
are offset by the reduced need for reallocating or expanding facilities, which would be more expensive in 
the long run [15]. 
The comprehensive output of  the simulation of  the MUFLP is summarised in Table 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2388 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 3: 2367-2401, 2025 
DOI: 10.55214/25768484.v9i3.5811 
© 2025 by the authors; licensee Learning Gate 

 

Table 5.  
MATLAB output of  the MUFLP     

Time Opened Facility Demand Points Served Optimal Cost 

 
 

5 

F1 1, 15 and 22 

 
 

1920621.36 

F2 3, 6, 8 and 9 

F3 4, 5, 17, 20, 21 and 23 
F5 7, 12, 16 and 19 

F7 2, 10, 11, 13, 14 and 18 

 
 

10 

F1 1, 2, 15 and 22 

 
 

3423123.58 

F2 3, 6, 8 and 9 
F3 4, 5, 17, 20, 21 and 23 

F5 7, 12, 16 and 19 

F7 10, 11, 13, 14 18 and 21 

 
 

15 

F1 1, 2, 15 and 22 

 
 

6155695.18 

F2 3, 6, 8, 9 and 14 
F3 4, 5, 12, 17, 20 and 23 

F5 7, 16 and 19 
F7 10, 11, 13, 18, and 21 

 
 

20 

F2 3, 8, 9, 14, 22, and 23 

 
 

10811816.50 

F3 1, 4, 5, and 20 

F4 2, 6, 12, and 17 

F5 7, 15, 16, and 19 
F7 10, 11, 13, 18, and 21 

 
 

25 

F2 3, 8, 9, 14, 22, and 23 

 
 

18964609.58 

F3 1, 4, 5, and 20 

F4 2, 6, 12, and 17 
F5 7, 15, 16, and 19 

F7 10, 11, 13, 18, and 21 

 
 

30 

F2 8, 9, 14, 22, and 23 

 
 

33373590.60 

F3 1, 4, 5, and 20 
F4 2, 3, 6, 12, and 17 

F5 7, 15, 16, and 19 

F7 10, 11, 13, 18, and 21 

 
 

40 

F2 9, 14, 22, and 23 

 
 

102856733.88 

F3 1, and 4 
F4 2, 3, 6, 12, 17 and 20 

F5 5, 7, 15, 16, and 19 
F7 8, 10, 11, 13, 18, and 21 

 
 

50 

F1 1 and 4 

 
 

308124888.07 

F2 9, 14, 22 and 23 

F4 2, 3, 6, 12, 17 and 20 

F5 5, 7, 15, 16, and 19 
F7 8, 10, 11, 13, 18, and 21 

 
5.10. Improved Service Coverage: 

The MUFLP model also improves service coverage by ensuring that each demand point is served by 
a facility that can handle its projected waste generation. The results show that facilities like F2 and F7, 
which serve many demand points, are strategically placed to accommodate future growth in those areas, 
ensuring that even as the population grows, all demand points remain adequately serviced, reducing the 
risk of  underserved regions and inefficient service delivery. 
 
5.11. MATLAB Coding of  the Modified Uncapacitated Facility Location Problem (MUFLP)  

The MUFLP model was executed in MATLAB, utilising the data provided in Table 3 and 

incorporating the new parameters (𝑊𝑗 and 𝑔𝑗) defined below to allow for a comprehensive modification 

and analysis of  the problem under consideration. 
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• Initial waste volumes/weights (𝑊𝑗) at the demand points, given in tonnes: 

𝑊𝑗 = [16; 22; 18; 20; 26; 24; 30; 22; 29; 28; 24; 21; 19; 17; 20; 18; 20; 21; 23; 19; 20; 25; 19]; 

 

• Population growth rates (𝑔𝑗) at the demand points: 

𝑔𝑗= [0.1, 0.2, 0.15, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.12, 0.14, 0.20, 0.21, 0.13, 0.12, 

0.1, 0.2, 0.14, 0.16, 0.11, 0.17]; 
 

• Time period (t years) for waste generation projection at the demand points, where 𝑡 is 

equivalent to 𝑛. 
 
5.11.1. The pseudo codes for the MATLAB model for the modified UFLP (MUFLP) Model. 
1. Define the data: 
   - Define the fixed costs for opening each facility: 
     - f  = [70000, 65000, 67000, 69000, 73500, 70500, 62000] 
   - Define the service costs for serving each demand point from each facility: 
     - c = [[700, 2115, 1865, 4050, 3085, 5030, 4150], 
            [1605, 1210, 960, 3145, 3880, 5660, 3245], 
            ...] 
   - Define the initial weights for each demand point: 
     - W = [16, 22, 18, 20, 26, 24, 30, 22, 29, 28, 24, 21, 19, 17, 20, 18, 20, 21, 23, 19, 20, 25, 19] 
   - Define the growth rates for each demand point: 
     - g = [0.1, 0.2, 0.15, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.12, 0.14, 0.20, 0.21, 0.13, 0.12, 0.1, 
0.2, 0.14, 0.16, 0.11, 0.17] 
   - Define the time period: 
     - t = 1 
2. Calculate the weights: 
   - Calculate the updated weights for each demand point: 
     - w = W * (1 + g)^t  // Element-wise multiplication and exponentiation 
3. Define the variables: 
   - Define the number of  facilities: 
     - n = 7 
   - Define the number of  demand points: 
     - m = 23 
   - Define the indices of  y variables (facility open variables): 
     - y = indices from 1 to n 
   - Define the indices of  x variables (service variables): 
     - x = indices from n+1 to n+m*n 
4. Define the objective function: 
   - Initialise the objective coefficients vector with fixed costs and zeros for service costs: 
     - fobj = [f, zeros(1, n*m)] 
   - Update the objective coefficients for service costs multiplied by weights: 
     - For each facility i (1 to n): 
         - For each demand point j (1 to m): 
             - fobj(x((j-1)*n+i)) = c(j, i) * w(j) 
5. Define the equality constraints (each demand point must be served exactly once): 
   - Initialize the equality constraint matrix and vector: 
     - Aeq = zeros(m, n + n*m) 
     - beq = ones(m, 1) 
   - For each demand point j (1 to m): 
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     - Set the coefficients for x variables corresponding to this demand point: 
       - For each facility i (1 to n): 
           - Aeq(j, x((j-1)*n+i)) = 1 
6. Define the inequality constraints (a facility must be open to serve a demand point and at least 3 
facilities must be opened): 
   - Initialize the inequality constraint matrix and vector: 
     - Aineq = zeros(n*m + 1, n + n*m) 
     - bineq = zeros(n*m + 1, 1) 
   - For each facility i (1 to n): 
     - For each demand point j (1 to m): 
         - Set the constraint that a demand point can only be served by an open facility: 
           - Aineq((i-1)*m+j, y(i)) = -1 
           - Aineq((i-1)*m+j, x((j-1)*n+i)) = 1 
   - Set the constraint that at least 3 facilities must be opened: 
     - Aineq(end, y) = 1 
     - bineq(end) = 3 
7. Define the bounds for the variables: 
   - Set the lower bound vector to zeros (all variables are non-negative): 
     - lb = zeros(n + n*m, 1) 
   - Set the upper bound vector to ones (variables are binary): 
     - ub = ones(n + n*m, 1) 
8. Define the integer variables: 
   - Set the indices of  the integer variables: 
     - intcon = indices from 1 to n + n*m 
9. Solve the MILP (Mixed-integer linear programming) problem: 
   - Set the options for the 'intlinprog' solver: 
     - opts = optimoptions('intlinprog', 'Display', 'off') 
   - Solve the optimization problem: 
     - [zopt, fval, exitflag, output] = intlinprog(fobj, intcon, Aineq, bineq, Aeq, beq, lb, ub, opts) 
10. Display the results: 
   - If  an optimal solution is found: 
     - Print 'The minimum cost is fval' 
     - Print 'The optimal solution is:' 
     - For each facility i (1 to n): 
         - If  the facility is opened (zopt(y(i)) == 1): 
             - Print 'Facility i is opened' 
             - For each demand point j (1 to m): 
                 - If  the facility serves the demand point (zopt(x((j-1)*n+i)) == 1): 
                     - Print 'Facility i serves demand point j' 
   - If  no optimal solution is found: 
     - Print 'No optimal solution found' 
11. Stop the timer and display the elapsed time: 
    - elapsedTime = toc 
    - Print 'Elapsed time is elapsedTime seconds' 
 
5.11.2. Simulation of  the Existing MUFLP 

The results from the Modified UFLP (MUFLP) model, which incorporates population growth and 
temporal dynamics, demonstrated significant improvements in the distribution of  waste management 
facilities and their long-term sustainability. Over a 50-year period, the MUFLP model was evaluated at 
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5-year intervals to assess its performance, reflecting the importance of  incorporating dynamic variables 
in long-term facility location planning [7, 43]. 
5-Year Interval: 

• Facilities F1, F2, F3, F5, and F7 were opened, serving 23 demand points. 

• While facilities such as F3 and F7 initially served more than five demand points, subsequent 
adjustments led to a more balanced distribution by the 10th year, with a cost of  ¢1,920,621.36. 
This iterative improvement supports the argument for dynamic adjustments in facility location 
models to optimise resource allocation over time [40]. 

30-Year Interval: 

• By the 30th year, the model achieved optimal performance. Each facility adhered to a maximum 
of  five demand points, and all demand points were adequately covered without overlap. 

• The cost for this configuration was ¢33,373,590.60, demonstrating the model's ability to 
maintain cost efficiency while accommodating future growth. This result is consistent with the 
literature on sustainable facility location planning, emphasising the need for models that adapt 
to changing demand patterns and environmental conditions [18]. 

50-Year Interval: 

• However, maintaining this optimal configuration proved challenging in the later years. By the 
50th year, Facilities F4 and F7 again exceeded the five-demand-point limit, increasing the 
overall cost to ¢308,124,888.07. 

• This indicates that while the MUFLP model is more adaptive than the UFLP model, it requires 
continuous refinement to sustain optimal performance over extended periods. The observed 
challenges align with findings from other studies highlighting the complexities of  long-term 
planning in dynamic environments [9, 15]. 

The MUFLP model's ability to predict and accommodate future demand growth resulted in a more 
sustainable and efficient waste management strategy than the traditional UFLP model. The results 
clearly illustrate the trade-offs between immediate cost savings and long-term sustainability, supporting 
the hypothesis that incorporating dynamic variables leads to more robust facility location decisions. 
Recent research supports this conclusion by advocating for incorporating temporal dynamics and 
demographic changes in facility location models to enhance their applicability and effectiveness [16]. 
 
5.11.3. Sensitivity Analysis 

A sensitivity analysis was conducted to evaluate the robustness of  the MUFLP model under 
different population growth scenarios and waste generation rates. The results indicate that the model's 
performance is susceptible to changes in these variables, emphasising the importance of  accurate data in 
long-term planning. For instance, a 10% increase in population growth led to a significant shift in the 
optimal facility locations, further increasing the overall operational costs. This reinforces the need for 
continuous data updates and model recalibration to ensure sustained efficiency, as highlighted in the 
literature by Hou, et al. [44] and Peidro, et al. [6], who emphasise the critical role of  adaptability in 
optimisation models for real-world applications. 
 
5.11.4. Analysis of  MATLAB Results 

The MATLAB implementation of  the MUFLP model provides valuable insights into the 
effectiveness of  the proposed modifications: 

 
5.11.5. Optimal Facility Selection Over Time: 

The results demonstrate that the MUFLP model consistently selects facilities that can manage the 
projected increase in waste generation. For instance, facility F2 is frequently selected across various 
periods (5, 10, 15, 20, 25, 30, 40, and 50 years), indicating its strategic importance when it comes to 
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handling long-term demand (see Table 5). The selection of  facilities changes over time, reflecting the 
model's adaptability to future needs. 

 
5.11.6. Cost Implications: 

The cost of  operating facilities increases over time as waste generation at the demand points grows. 
For instance, the optimal cost rises from ¢GHS1,920,621.36 at year 5 to ¢GHS308,124,888.07 at year 50 
(see Table 5). This highlights the importance of  planning for future expenses and ensuring sufficient 
resources are allocated to maintain efficient waste management over the long term. 

 
5.11.7. Flexibility and Adaptability: 

The flexibility of  the MUFLP model is evident in its ability to reassign demand points to different 
facilities as conditions change. For example, Facility F1 serves demand points 1, 15, and 22 in the initial 
years. However, by year 50, F1 was no longer in use, and demand points were redistributed to other 
facilities like F2 and F7 (see Table 5). This adaptability is crucial for maintaining optimal service 
coverage as the urban landscape evolves. 
 
5.11.8. Inferences and Future Directions 

The modifications introduced in the MUFLP model offer several advantages over the traditional 
UFLP model: 

Scalability: The model is scalable, allowing adjustments as new data on population growth and 
waste generation becomes available. This ensures that the model remains relevant and effective over 
time. 

Strategic Planning: The insights gained from the MUFLP model can inform strategic planning and 
policymaking, ensuring that resources are allocated efficiently and that facilities are placed in locations 
that will remain viable as demand increases. 

Environmental Impact: The model helps reduce the environmental impact of  waste management 
operations by optimising facility locations based on future projections. Shorter travel distances between 
demand points and facilities translate into lower fuel consumption and emissions, aligning with broader 
sustainability goals. 

In conclusion, the MUFLP model significantly advances facility location optimisation by integrating 
population growth and temporal dynamics. This approach improves the immediate efficiency of  waste 
management systems and ensures their long-term viability and sustainability, making it a valuable tool 
for urban planners and policymakers. 
 



2393 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 3: 2367-2401, 2025 
DOI: 10.55214/25768484.v9i3.5811 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 3.  
Network of  paths connecting the twenty-three demand points and the five opened 
facilities. 

 
5.11.9. Discussion on Figure 3  

Figure 3 provides a visual representation of  the network of  shortest paths connecting twenty-three 
demand points and five opened facilities during the thirtieth period in the study. The figure is a crucial 
tool for understanding the spatial dynamics and optimal configuration of  the logistics or supply chain 
network under analyses. The findings related to the network Configuration are detailed above. 
 
5.11.9.1. Optimal Facility Placement: 

The five newly opened facilities (F2, F3, F5, F6, and F7) are strategically located to minimise the 
distance between them and their demand points. This configuration aligns with the goal of  the Modified 
Uncapacitated Facility Location Problem (MUFLP) model, which aims to reduce operational costs by 
optimising the placement of  facilities based on current and projected future demand [7]. 
 
5.11.9.2. Balanced Service Distribution: 

The network reveals a balanced distribution of  service coverage across the demand points. For 
example, Facility F7, which is located in the eastern part of  the network, serves several demand points 
(J, K, L, M, N, and O, and P), ensuring that this region is adequately covered. Similarly, facilities like F3 
and F5 serve demand points spread across different areas, reducing the likelihood of  service overlap and 
ensuring that every facility is well-rested. 
 
5.11.9.3. Strategic Redundancy: 

The network also suggests the presence of  strategic redundancy, which is critical in logistics and 
supply chain management. For instance, facility F2 serves demand points (A, B, C, and D) near other 
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facilities like F1 and F6. This redundancy ensures that in case of  increased demand or facility downtime, 
alternative facilities nearby can take over, thus maintaining service continuity  [15]. 
 
5.11.9.4. Minimisation of  Transportation Costs: 

The primary goal of  this network configuration is to minimise transportation costs, which are 
strategically influenced by the distances between facilities and demand points. The shortest paths 
indicated in the figure demonstrate how the MUFLP model successfully reduces these distances, 
lowering fuel consumption, emissions, and overall operational costs [16]. 
 
5.12. Implications of  the Network Design 

The possible implications of  the network design are shown in as figure 3: 
 
5.12.1. Long-Term Sustainability: 

The positioning of  facilities and the connections between demand points highlight a design that is 
not only cost-efficient in the short term but also sustainable in the long term. Considering population 
growth and future demand projections, the network is well-equipped to handle increasing waste 
volumes without requiring frequent reconfigurations [9]. 
 
5.12.2. Scalability and Flexibility: 

The network's layout suggests a high degree of  scalability and flexibility. As demand points grow 
or new points emerge, the model can easily accommodate these changes by either opening new facilities 
or adjusting the service areas of  existing ones. This flexibility is essential for adapting to changing 
urban dynamics and ensuring that waste management practises remain effective over time [40]. 
 
5.12.3. Resource Optimisation: 

By visualising the network, planners and decision-makers can gain a better understanding how 
resources are allocated across the region. The distribution of  facilities ensures that resources like waste 
collection vehicles and workforce are used efficiently, reducing idle time and maximising productivity 
[44]. 
 
5.12.4. Enhanced Decision-Making: 

The network provides a clear, visual basis for making informed decisions regarding facility location, 
resource allocation, and service distribution. It allows stakeholders to identify potential bottlenecks, 
areas that may require additional support, and opportunities for optimising the network further [43]. 

 
5.13. Inferences and Future Considerations 

The network presented in Figure 3 underscores the effectiveness of  the MUFLP model in 
addressing the challenges of  facility location optimisation. The visual representation of  the shortest 
paths between demand points and facilities provides insights into the model's capability to balance cost-
efficiency with service coverage and sustainability. 

The success of  this network configuration highlights the importance of  incorporating dynamic 
factors, such as population growth and temporal changes, into facility location models. These 
considerations ensure that the network remains viable and effective as conditions evolve, making it a 
crucial tool for long-term planning [36]. 

While the network demonstrates a well-balanced distribution of  service coverage, there may be 
opportunities to enhance enhancing the model further by incorporating additional variables, such as 
environmental impact assessments or real-time data integration, to make the network even more robust 
and adaptable [18]. 

In conclusion, Figure 3 illustrates a well-optimised network that effectively connects twenty-three 
demand points with five strategically placed facilities. The network minimises transportation costs, 
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ensures balanced service coverage, and provides a flexible and scalable framework for future waste 
management needs. The insights gained from this network are invaluable for enhancing decision-
making and planning processes, ultimately contributing to more sustainable and efficient waste 
management practises. 

 

6. Discussion  
6.1. Analysis and Discussion of  the MATLAB output of  the existing UFLP model 

The MATLAB output for the Uncapacitated Facility Location Problem (UFLP) model highlights 
the complexities of  facility location optimisation, particularly when the model's assumptions are not 
fully met. While the model successfully identifies five facilities (F2, F3, F4, F6, and F7) to be opened, the 
distribution of  demand points reveals significant deviations from the core assumptions. Specifically, the 
second assumption—that each facility should serve no more than five demand points—is violated. For 
instance, Facility F2 serves ten demand points, Facility F3 serves 11, Facility F4 serves 6, Facility F6 
serves 8, and Facility F7 serves 11, all exceeding the prescribed limit. This overextension challenges the 
facilities' operational efficiency and suggests that the model's algorithm requires refinement to enforce 
these constraints better [7]. 

Moreover, the third assumption stipulates that a single facility should exclusively serve each demand 
point. The output indicates that multiple facilities serve the same demand points, leading to overlaps 
that further complicate the network's efficiency. This overlap violates the principle of  exclusive service, 
which is critical in reducing redundancy and operational costs [15]. Despite achieving a cost-effective 
solution with a minimum cost of  ¢GHS430,940.00, the failure to adhere to the UFLP model's 
foundational assumptions indicates that the cost-effective solution is not optimal in practise. 

It is imperative to enhance the optimisation algorithm to address these issues is imperative by 
incorporating advanced techniques that enforce these constraints more rigorously [36]. This refinement 
is crucial to achieving a solution that minimises costs and strictly adheres to the model's assumptions, 
ensuring that each facility operates within its capacity and optimises service coverage. 

 
6.2. Discussion of  Results of  the Modified UFLP (MUFLP) Model 

The Modified Uncapacitated Facility Location Problem (MUFLP) model introduces dynamic 
elements such as population growth rate and time factors to improve long-term sustainability and 
adaptability. However, the MATLAB output over a 50-year period reveals that while the MUFLP model 
offers improvements over the traditional UFLP, it, too, encounters challenges in consistently meeting its 
assumptions [40]. 
 
6.3. Five-Year Intervals Analysis: 
The First 5 Years: 

Distribution: Facility F1 serves demand points 1, 15, and 22; F2 serves 3, 6, 8, and 9; F3 serves 4, 5, 
17, 20, 21, and 23; F5 serves 7, 12, 16, and 19; F7 serves 2, 10, 11, 13, 14, and 18. 
Cost: ¢GHS1,920,621.36 
Issue: Facilities F3 and F7 exceed the five-demand-point limit, reflecting an initial misalignment 
with the model's constraints [16]. 
 
The 10th Year: 
Distribution Adjustments: Minor adjustments were made, but facilities F3 and F7 continue to exceed 
the five-demand-point limit. 
Cost: ¢GHS3,423,123.58 
Issue: Persistent over-limit issues suggest the algorithm needs further refinement [8]. 
 
The 15th Year: 
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Distribution: Adjustments reduce the over-limit issue slightly, but some facilities still exceed the 
demand point cap. 
Cost: ¢GHS6,155,695.18 
Issue: There is a continued need for better enforcement of  the model's constraints [34]. 
 
The 20th Year: 
Distribution: Introducing Facility F4 helps improve distribution, but Facility F2 still serves more 
than five demand points. 
Cost: ¢GHS10,811,816.50 
Improvement: Introducing additional facilities aids distribution but does not entirely resolve the 
over- limit issue [36]. 
 
The 25th Year: 
Distribution: Similar to the 20th Year, with persistent issues. 
Cost: ¢GHS18,964,609.58 
Issue: Continued challenges meeting demand point limits [40]. 
 
The 30th Year: 
Distribution: Finally, all facilities meet the five-demand-point limit. 
Cost: ¢GHS33,373,590.60 
Optimality Achieved: The model achieves optimality, aligning with all constraints [7]. 
 
The 40th Year: 
Distribution: Facility F4 begins to exceed the five-demand-point limit again, reflecting the challenges 
of  maintaining optimality over time. 
Cost: ¢GHS102,856,733.88 
Issue: The re-emergence of  over-limit issues suggests the need for ongoing adjustments [16]. 
 
The 50th Year: 
Distribution: Facilities F4 and F7 exceed limits with a significant cost increase. 
Cost: ¢GHS308,124,888.07 
Issue: The model needs help maintaining optimal performance, with costs rising substantially [37]. 

 
6.3.1. Summary 

The results of  the MUFLP model indicate that while it has the potential to better adhere to its 
assumptions compared to the UFLP, it requires ongoing refinement to consistently achieve and maintain 
optimality. The significant cost increases over time highlight the importance of  continuously improving 
the algorithm to ensure sustainable and efficient facility allocation [13]. Future enhancements should 
focus on stricter enforcement of  constraints and more sophisticated optimization techniques to better 
align with the model's assumptions [40]. 
 
6.4. Comparative Analysis of  UFLP and MUFLP 

The comparative analysis of  the UFLP and MUFLP models demonstrates distinct differences in 
performance and adherence to foundational assumptions. The UFLP model, while effective in 
identifying the maximum number of  facilities, frequently deviates from its assumptions, particularly 
regarding facility distribution and demand point coverage. Thus, it increases costs and constraint 
violations over time, indicating a need for significant algorithmic enhancements [15]. 

Conversely, although not without challenges, the MUFLP model displays greater adaptability and a 
more iterative approach to meeting its assumptions. While initial deviations are similar to those 
observed in the UFLP model, the MUFLP model gradually refines its solutions, particularly by the 30-
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year mark, which is when it achieves optimality [34]. This ability to adapt and improve over time makes 
the MUFLP model a more promising framework for addressing long-term facility allocation challenges. 

Regarding recommendations, the MUFLP model is preferable for dynamic environments where 
demand is expected to grow over time. Its iterative nature allows for continuous improvement, leading 
to more reliable and efficient solutions than those provided by the UFLP model [16]. Thus, the MUFLP 
model is the preferred choice for facility allocation problems, particularly in long-term sustainability and 
adaptability scenarios.   

 

7. Implications 
The findings from this study have significant implications across scientific, social, and practical 

domains, underscoring the need to enhance facility location models for more sustainable and efficient 
resource distribution. 

 
7.1. Scientific Implications 

This study emphasises the necessity of  developing advanced optimisation algorithms [29] that 
dynamically adjust [29] to distribution challenges while strictly enforcing constraints [40]. These 
improvements are crucial in operations research and computational optimisation, creating more robust 
and adaptable models that align theoretical frameworks more closely with real-world applications [36]. 
The study also sets a benchmark for future evaluations [29] encouraging the development of  algorithms 
that consistently achieve optimal solutions within predefined constraints, thus contributing to the 
advancement of  the field [7]. The findings from this study have significant implications across scientific, 
social, and practical domains, underscoring the need to enhance facility location models for more 
sustainable and efficient resource distribution. 

 
7.2. Social Implications 

Optimising facility locations can significantly improve equitable access to essential services such as 
healthcare, education, and emergency response, particularly in underserved communities [41]. By 
ensuring an even distribution of  demand points, the study highlights the potential for more equitable 
resource allocation, reducing disparities in service provision [15]. This optimisation is vital for urban 
and rural planners aiming to design inclusive and effective community infrastructure, ultimately 
contributing to enhanced social equity and better public health outcomes [47]. 
 
7.3. Practical Implications 

From a practical perspective, optimised facility locations can lead to substantial cost savings both in 
the short and long term. Adhering to model constraints allows organisations to reduce operational 
expenses and avoid resource overextension [43]. These findings can inform policymakers and 
businesses, helping them to guidelines and regulations that promote efficient and sustainable facility 
placement [48]. Additionally, optimising facility distribution enhances disaster response and crisis 
management capabilities, ensuring the swift and effective distribution of  resources during emergencies, 
ultimately saving lives and mitigating the impact of  disaster [49]. 

 
7.4. Future Research Directions 

Future research should focus on developing more sophisticated algorithms capable of  handling 
dynamic and complex constraints to ensure consistent optimality over extended periods [13]. Applying 
these models to real-world scenarios [50] will test their effectiveness and adaptability in various 
contexts, from urban planning to supply chain management [43]. An interdisciplinary approach, 
integrating insights from operations research, computer science, and the social sciences, will be crucial 
for developing comprehensive and practical solutions for facility location problems [7]. 
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8. Conclusions 
Our comparative analysis of  the UFLP and MUFLP models over a 50-year period offers critical 

insights into their performance and adherence to foundational assumptions. While the UFLP model 
effectively addresses the need to open the maximum number of  facilities, it exhibits significant 
deviations from its core assumptions [51]. Specifically, the imbalanced distribution of  demand points—
where facilities like F2 and F7 each serve up to 11 demand points, far exceeding the permissible limit—
indicates substantial flaws in the model's application. Despite achieving a minimum cost of  
¢GHS430,940.00, these violations suggest that the solution may not be optimal. The model's failure to 
strictly enforce constraints highlights the urgent need for substantial algorithmic enhancements to 
ensure that each facility serves no more than five demand points, with a single facility handling each 
one. 

The MUFLP model demonstrates greater flexibility and adaptability over time. During the first five 
years, facilities such as F3 and F7 exceed the five-demand-point limit, necessitating redistribution 
efforts. By the tenth year, partial improvements are observed, although some violations persist. At the 
30-year mark, the model achieves optimal performance, with each facility adhering to the demand point 
limit and costs stabilising at ¢GHS33,373,590.60. However, maintaining this optimal state proves 
challenging, as violations re-emerge in subsequent years, leading to a significant cost increase, which 
culminate at ¢GHS308,124,888.07 by the 50th year. 

The substantial cost escalation [52] observed in both models over time underscores the need for 
enhanced algorithms and stricter constraint enforcement [44] to ensure sustainable and efficient facility 
allocation. While the UFLP model's lower initial cost may seem advantageous, its persistent violations 
undermine its reliability for long-term planning. In contrast, the MUFLP model, despite its fluctuations, 
displays potential for iterative improvement and better alignment with the model's assumptions. 

Future studies shall improve the MUFLP model to better meet assumptions and deliver optimal 
solutions by integrating sophisticated methods and robust constraint enforcement mechanisms. This 
approach will ensure long-term sustainability and efficiency in facility allocation, guaranteeing that each 
facility serves a balanced number of  demand points without overlap. Consequently, the MUFLP model, 
with its capacity for iterative refinement, emerges as the preferred choice for achieving long-term 
optimality and compliance in facility location planning. 
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