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Abstract: With the growing global focus on sustainability, net-zero energy building (NZEB) 
retrofitting has become a meaningful way to improve energy efficiency and reduce carbon emissions. 
However, research on evaluating residents' satisfaction with these retrofit projects is lacking. This study 
aims to fill this gap using customer perceived value (CPV) theory and PSO-LightGBM algorithms to 
evaluate the factors influencing satisfaction with NZEB retrofits. The research framework is based on 
CPV, with functional, emotional, social, and cost values as critical drivers of satisfaction. Post-retrofit 
feedback was analyzed using PSO-LightGBM and other machine learning (ML) models like CatBoost, 
XGBoost, and AdaBoost. The study found that “government subsidies and support,” “living comfort,” 
“personalized experience,” “social acceptance,” and “improved environmental image” are the top five 
most important factors affecting satisfaction with renovating NZEB. In addition, the PSO-LightGBM 
algorithm excels in accuracy, precision, and F1 score, outperforming other ML models. The study also 
suggests several enhancement strategies, such as the use of energy-efficient technologies and 
environmentally friendly materials, to ensure that the performance of the retrofitted buildings improves 
significantly. 

Keywords: Building retrofit, Customer perceived value, LightGBM, machine learning, Net-zero energy buildings, Particle 
swarm optimization (PSO). 

 
1. Introduction  

Under the combined pressures of global climate change, resource shortages, and environmental 
degradation, the issue of energy consumption in the construction industry has become a key focus for 
governments and academia worldwide. In Europe, for example, building energy consumption accounts 
for about 40% of total energy consumption and 36% of greenhouse gas emissions [1]. The residential 
sector is the most important in total energy consumption in almost all countries, with the EU countries, 
the USA, and China topping the list [2]. Net-Zero Energy Building (NZEB) retrofitting, as an essential 
means of energy conservation and emission reduction, aims to balance building energy consumption and 
energy production by improving the energy efficiency of buildings and introducing renewable energy 
technologies [3]. For instance, China's Ministry of Housing and Urban-Rural Development (MHURD) 
plans to complete the renovation of 219,000 urban areas during the 14th Five-Year Plan period [4]. 
Figure 1 shows the number of renovations of old buildings starting in each province in 2023. 
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Figure 1.  
Number of residential renovations in each province of China in 2023. 

 
Old buildings mostly use HVAC equipment, insulation materials, and lighting technology with low 

energy efficiency. Therefore, most current research focuses on energy retrofitting measures and 
technological upgrading programs. Wills, et al. [5] retrofitted a community of 50 older single-family 
homes from the 1980s. They found that deep retrofits and fuel switching from natural gas to electric 
heat pump systems could reduce the community's energy demand by 69%. Ohene, et al. [6] analyzed a 
typical residential building in Ghana through parametric simulation. They found that passive design 
strategies such as natural ventilation, shading, lighting, and airtightness of the envelope reduced the 
energy use intensity (EUI) from 136–138 kWh/m2/year to 68–70 kWh/m2/year, thereby reducing 
total energy demand by 48–50%. Costa, et al. [7] simulated a representative four-story office building 
in Design Builder and Diva in Rio de Janeiro. They found that adding photovoltaic equipment to the 
roof and building facade can reduce total energy consumption by 46%. In the past five years, with the 
rise of artificial intelligence technology, the renovation of zero-energy buildings has not only been 
limited to the optimization of the external envelope but also considers the application of building-
integrated renewable energy, intelligent materials (such as phase change materials in concrete), smart 
glass, smart buildings and the implementation of the Internet of Things [8]. However, few studies have 
focused on occupant satisfaction evaluations after NZEB retrofits. User satisfaction affects the social 
acceptance and long-term use of the project and largely determines the widespread promotion and 
marketization of such projects [9]. Unlike new buildings, the renovation process of old buildings often 
involves complex technical, economic, and social issues. Although the technology for renovating zero-
energy buildings is becoming increasingly mature, user perceptions, experiences, and expectations of 
renovation projects vary greatly. For example, one study showed that energy-efficient buildings do not 
provide satisfactory indoor environmental quality [10]. Some occupants reported difficulties 
understanding and operating their heating and ventilation systems [11]. In addition, there is a lack of 
consideration of the thermal satisfaction of occupants in methods based on actual data. Geraldi and 
Ghisi [12] proposed integrating thermal satisfaction into energy benchmarking. Therefore, 
understanding the key factors affecting user satisfaction is the basis for driving the success of near-zero 
energy building retrofits. 
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Combining the customer perceived value (CPV) theory and the PSO-LightGBM algorithm, this 
paper constructs a novel analytical framework for evaluating customer satisfaction factors for NZEB 
retrofits. Unlike previous studies that mainly relied on traditional statistical methods or single-factor 
analysis, this study systematically classifies customer satisfaction into functional, emotional, social value, 
and cost value dimensions through CPV theory to comprehensively capture customers' 
multidimensional perceptions [13] the use of the PSO-LightGBM algorithm to handle nonlinear 
relationships and high-dimensional data significantly improves the accuracy of model prediction and the 
explanatory power of feature importance. The functional value measures users’ evaluation of the actual 
energy efficiency and improvement in living comfort after the building renovation; emotional value is 
related to the sense of pleasure and psychological satisfaction that users feel during their stay; social 
value reflects users’ perception of social identity and personal image; and cost value involves users’ 
financial contribution to the renovation project and the cost of use [14]. These perceived value 
dimensions affect users’ overall satisfaction [15]. Most research is limited to qualitative analysis [16, 
17]. It fails to conduct an in-depth quantitative analysis of the perceived value of different dimensions, 
resulting in an incomplete identification of the critical factors affecting satisfaction. 

Furthermore, a series of innovative algorithms and techniques have emerged in machine learning 
recently, greatly expanding its application scope and performance capability [18]. For example, deep 
learning, especially in convolutional neural networks (CNN) and recurrent neural networks (RNN), has 
made revolutionary breakthroughs in image processing, speech recognition, and natural language 
processing. In addition, reinforcement learning (RL) has been widely used in complex decision-making 
tasks such as autonomous driving and robot control by continuously optimizing strategies through 
environmental interaction [19]. Meanwhile, integrated learning methods, such as XGBoost, CatBoost, 
and LightGBM, have demonstrated powerful performance when dealing with large-scale data, especially 
in classification and regression tasks, where prediction accuracy is significantly improved by combining 
the advantages of multiple models [20]. The PSO-LightGBM model proposed in this study further 
optimizes the hyperparameters of LightGBM with the help of the particle swarm optimization (PSO) 
algorithm, which is an optimization method that mimics the behavior of groups in nature and exhibits 
good global search capability in optimization problems. Combining PSO with LightGBM can effectively 
avoid the local optimal solution problem in traditional model training and improve the prediction 
accuracy and stability of the model. Compared with conventional machine learning methods, PSO-
LightGBM can provide more accurate and robust results when dealing with data with complex features 
and nonlinear relationships, providing an innovative solution for complex tasks such as building energy 
efficiency assessment. 

The rest of this study is organized: Section 2 describes the factor system, and Section 3 describes the 
data overview and research methods. Section 4 presents the results of applying multiple ML methods 
and explains the weighting results. Section 5 presents recommendations for future improvements to the 
NZEB retrofit. Section 6 summarizes the study and describes its limitations. 
 

2. Literature Review 
As indicated in Table 1, We conducted a literature review to construct a multidimensional system of 

factors based on functional, emotional, social, and cost value. Functional value focuses on the technical 
performance of the retrofitted building, emotional value pays attention to the user's psychological and 
emotional identity, social value explores the users’ sense of gain in social relationships and identity, and 
cost value balances the users' economic investment and long-term return. This system of factors 
provides a scientific basis for studying user satisfaction. 
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Table 1.  
NZEB retrofit satisfaction indicator system. 

Types ID Factors Descriptions 

Function 

F1 
Energy Efficiency 
Improvement 

Whether the energy consumption of the retrofitted building is 
significantly reduced and whether the goal of zero energy consumption 
can be achieved. 

F2 
Indoor Environment 
Improvement 

Whether the retrofitted building's temperature, humidity, ventilation, 
and air quality significantly improve the living comfort. 

F3 
Equipment reliability and ease 
of use 

Whether the smart home system or energy management device 
introduced is easy to use and less prone to failure. 

F4 
Integration of building 
functions 

Whether various intelligent functions such as energy management and 
temperature control can be integrated into a convenient system. 

F5 Extended building life 
Whether the retrofit has improved the durability and safety of the 
building and whether the building materials and workmanship have 
helped extend its life. 

Emotion 

E1 User engagement 
Whether the user feels involved in the decision-making process or can 
express their needs and see their suggestions adopted. 

E2 Living comfort 
Whether the design and decoration of the renovated building enhance 
the user's daily sense of pleasure and psychological comfort. 

E3 Sense of security 
Whether the building gives users a stronger sense of security regarding 
safety, privacy protection, and equipment reliability. 

E4 
Psychological identification 
and satisfaction 

Whether users feel a sense of psychological achievement and belonging 
through participation in a green and sustainable lifestyle. 

E5 Personalized experience 
Whether the user's preferences were considered during the renovation 
process and whether customized functions and designs can be provided. 

Society 

S1 Social acceptance 
Whether users living in zero-energy buildings feel positively evaluated 
and recognized by society for their environmentally friendly lifestyles. 

S2 
Neighborhood interaction and 
community atmosphere 

Whether the renovation has promoted communication and identification 
among community neighbors and enhanced the overall community 
atmosphere. 

S3 
Improved environmental 
image 

Whether users feel that the retrofitted building positively impacts their 
personal image and social identity and whether it helps demonstrate 
their sense of responsibility for environmental protection. 

S4 Media and social feedback 
Whether the retrofit project has received positive media coverage and 
enhanced the user's sense of social recognition. 

S5 Sense of social responsibility 
Whether users have enhanced their sense of responsibility and action 
towards social and environmental issues through participation in 
renovating zero-energy buildings. 

Cost 

C1 
Reasonableness of conversion 
costs 

Whether the retrofitting costs paid by the user are within their budget 
and whether they meet market expectations. 

C2 
Long-term energy cost 
savings 

Whether the retrofit can reduce energy costs and alleviate the family's 
long-term financial burden. 

C3 
Controllable maintenance 
costs 

Whether the equipment and systems in the building after the renovation 
are easy to maintain, whether the maintenance costs are low, and 
whether there are frequent problems. 

C4 
Government subsidies and 
support 

Whether the user can enjoy government subsidies, tax incentives, or 
other incentives to reduce the economic burden. 

C5 Return on investment period 
Whether the user's investment in zero-energy retrofits will be paid back 
within a reasonable period through energy cost savings or added value. 
 

Source: The indicator system refers to studies [20-25]. 

 
 
 
 
 



2512 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 3: 2508-2530, 2025 
DOI: 10.55214/25768484.v9i3.5835 
© 2025 by the authors; licensee Learning Gate 

 

3. Methods 
 

 
Figure 2.  
Research process. 

 
As illustrated in Figure 2, this study is structured into five systematic steps to ensure a 

comprehensive approach. Step 1 involves collecting questionnaire data on NZEB retrofits within the 
Kuala Lumpur region, laying the foundation for subsequent analysis. Step 2 focuses on enhancing the 
LightGBM model by integrating Particle Swarm Optimization (PSO), aiming to improve its prediction 
accuracy and efficiency. In Step 3, SHAP analysis is employed to filter and streamline the features, 
enabling the identification of key contributors to NZEB retrofits. Step 4 entails a comparative 
evaluation, where the improved PSO-LightGBM model is analyzed alongside the original LightGBM 
and other machine learning models, offering insights into its relative performance. Finally, Step 5 
proposes enhancement strategies, leveraging the research findings to provide actionable 
recommendations for optimizing NZEB transformations. 
 
3.1. Questionnaire Data Collection 

We selected Malaysia's Kuala Lumpur area (See Figure 3) to conduct a satisfaction study on the 
retrofit of zero-energy buildings due to the accelerated urbanization process, growing energy demand, 
and government policy support for sustainable development in the region. The construction industry in 
Malaysia consumes 14.3% of total energy, with the residential and commercial sectors consuming 53% 
of electricity [26]. As Southeast Asia's economic and cultural center, Kuala Lumpur faces enormous 
challenges and opportunities in building a green city and low-carbon economy. Its climatic conditions, 
population density, and diverse building types make it an ideal testing ground for studying NEZB 
retrofit' effects [27]. At the same time, the Malaysian government has actively promoted green building 
policies in recent years, providing a policy and market foundation for NEZB retrofits, which provides 
rich data support for studying user satisfaction and the application effects [28]. 
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Figure 3.  
Location map of Kuala Lumpur. 

 
Data collection began on 1 March 2024. It is worth noting that the questionnaire for this study has 

been granted a waiver of ethical review from the affiliation (see Supplementary file 1), as it does not 
involve sensitive information such as invasive experiments, medical investigations, and commercial 
confidentiality. We confirm that informed consent was obtained from all respondents. The sample 
population was selected to include a representative sample of tenants and homeowners directly 
connected to building environmental issues. Refer to previous research [29, 30] the sample population 
was chosen from tenants and homeowners directly related to the NEZB renovation issue. It contained 
representative samples of different ages, genders, occupations, and educational backgrounds to ensure 
the diversity and representativeness of the data. A random sampling method randomly selected samples 
from different NEZB retrofit projects. A standardized questionnaire instrument, the 5-point Likert 
scale, was used to measure participants' importance ratings of the factors. The above factors were listed 
in the questionnaire, and the respondents were asked to rate each factor using a range of scores (e.g., 1 
to 5), indicating its importance to satisfaction. Survey stations were set up at suitable locations, such as 
centers and entrances of the retrofitted dwellings, and participants were invited to complete the 
questionnaire through online survey platforms (SurveyMonkey®) to reach a broader range of 
respondents. All surveys were conducted with the consent of the participants and to ensure the 
confidentiality of their personal information and response results. 

450 questionnaires were sent out, and 397 were returned for a recovery rate of 88.22%. As indicated 
in Table 2, of those who participated in the survey, 52.39% were male, and 47.61% were female. The 
vintage of the renovated buildings was mainly 10-20 years, 20-30 years, and 30-40 years, accounting for 
26.70%, 29.47%, and 23.68%, respectively. Most people who live in remodeled buildings are over 10 
years old but not over 40 years old. The types of retrofitted buildings inhabited by residents are mainly 
low-rise and multi-story buildings, with proportions of 34.76% and 28.97%, respectively. Low-rise 
buildings are the primary type of retrofitted building where residents live. The steelwork structure has 
the lowest selection proportion of 15.08% among the structure types. In comparison, brick-concrete and 
reinforced-concrete structures have similar selection proportions of 33.52% and 29.97%, respectively. 
The length of residence after retrofitting was mainly concentrated in the stages of 1-2 and 2-3 years, 
accounting for 37.28% and 25.94%, respectively, while the proportion of the length of residence within 
less than 1 year and more than 3 years was relatively low, at 22.17% and 14.61%, respectively. 
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Table 2.  
Profile of the sample population. 

Classification Items Number Percentage 

Gender 
Male 209 52.39% 

Female 189 47.61% 

Age of renovated building 

10-20 106 26.70% 

20-30 117 29.47% 
30-40 94 23.68% 

Over 40 80 20.15% 

Building type 

Low-rise 138 34.76% 

Multi-story 115 28.97% 

Middle-rise 81 20.40% 
High-rise 63 15.87% 

Structure type 

Brick-wood 77 19.40% 
Brick-concrete 141 33.52% 

Reinforced-concrete 119 29.97% 
Steelwork 60 15.11% 

Length of residence 

0-1 148 37.28% 
1-2 103 25.94% 

2-3 88 22.17% 

Over 3 58 14.61% 

 
The reliability analysis was conducted using SPSS27® software, and the results showed that the 

Cronbach.α coefficient was 0.968 [31]. This coefficient is greater than the standard value of 0.80, which 
is usually considered excellent internal consistency, indicating that the questionnaire has a high level of 
reliability and can reflect the characteristics of the concepts being tested stably. The KMO value in the 
validity analysis of the questionnaire was 0.983, which is much greater than the generally accepted value 
of 0.8 or greater, indicating that the sample has reasonable sampling reasonableness [32] the value of 
Butterball (approximately chi-square) was 6467.919, the df (degrees of freedom) was 210, and the p-
value was 0.000 (less than 0.05), indicating that the data are suitable for factor analysis. 
 
3.2. LightGBM Algorithm 

LightGBM is an efficient machine learning algorithm based on gradient-boosted decision trees 
(GBDT), which is mainly used to handle learning tasks with large-scale data and high-dimensional 
features [33]. It uses a series of optimization strategies to make training faster, use less memory, and be 
able to handle large amounts of data and features. The algorithm steps are as follows [34]: (1) 
initialization, constructing an initial learner (tree) as the base model; (2) iterative training, constructing 
more learners in turn through iteration, each learner trying to correct the errors of the previous learner; 
(3) gradient optimization, each iteration optimizing the model, so that the loss function on the training 
set is minimized; (4) leaf node splitting, which gradually generates more complex decision tree 
structures by selecting the optimal features and split points based on split gain. The leaf-wise algorithm 
is used to find the leaf with the largest splitting gain from all the current leaves for splitting; (5) 
boosting learning, which improves the prediction ability of the overall model by accumulating the 
prediction results of multiple simple models. 
The objective function of LightGBM consists of a loss function and a regularization term [35]: 

Obj = ∑  𝑛
𝑖=1 𝑙(𝑦𝑖 , �̂�𝑖) + ∑  𝑇

𝑗=1 Ω(𝑓𝑗)                        (1) 

where 𝑙 is the loss function, 𝑦𝑖 is the true value, �̂�𝑖 is the predicted value, Ω is the regularisation 

term, and 𝑇 is the number of trees. 
LightGBM selects the leaf node with the greatest split gain at each split. The split gain is calculated 

using the following formula [36]: 



2515 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 3: 2508-2530, 2025 
DOI: 10.55214/25768484.v9i3.5835 
© 2025 by the authors; licensee Learning Gate 

 

𝑤𝑗 = −
𝐺𝑗

𝐻𝑗+𝜆
                             (2) 

The weight of each leaf node is calculated as follows [37]: 

𝑤𝑗 = −
𝐺𝑗

𝐻𝑗+𝜆
                                      (3) 

 

where 𝐺𝑗 is the gradient of the leaf node and 𝐻𝑗 is the second derivative of the leaf node, and 𝜆 is the 

regularisation parameter. 
 

4. Results 
4.1. Spearman Correlation Analysis 

Spearman correlation analysis is used to study the relationship between quantitative data, including 
whether there is a relationship and the degree of closeness of the relationship [38]. Its arithmetic rule is 
as in Equation 4. We used SPSS27® software to correlate the relationship between each factor and 
satisfaction level (SL); the results are shown in Table 3; all the factors strongly correlate with SL, which 
can be used for the subsequent analysis. 

𝜌 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2−1)
                                           (4) 

Where, 𝜌 is the Spearman correlation coefficient; 𝑑𝑖 is the rank difference for each pair of 

observations; and 𝑛 is the number of observations. 
 
Table 3.  
Result of Spearman correlation analysis. 

ID Mean Std. Correlation coefficient (math.) 
F1 3.718 1.270 0.565** 

F2 3.688 1.171 0.554** 
F3 3.670 1.279 0.565** 

F4 3.645 1.201 0.584** 
F5 3.715 1.282 0.649** 

E1 3.577 1.264 0.600** 

E2 3.587 1.274 0.657** 
E3 3.642 1.263 0.634** 

E4 3.615 1.241 0.671** 
E5 3.539 1.276 0.662** 

S1 3.685 1.253 0.660** 
S2 3.630 1.266 0.631** 

S3 3.594 1.275 0.673** 
S4 3.615 1.245 0.690** 

S5 3.688 1.234 0.674** 

C1 3.547 1.244 0.580** 
C2 3.678 1.194 0.550** 

C3 3.685 1.245 0.643** 
C4 3.670 1.271 0.562** 

C5 3.773 1.199 0.562** 
Note: * p<0.05 ** p<0.01; Dependent variable is SL. 

 
4.2. Construction of the Initial Prediction Model 

Nine ML models such as AdaBoost, CatBoost, XGBoost, RF, MLP, and LightGBM, are 
constructed, and the experimental environment is Nvidia GeForce MX550 and 12th Gen Intel (R) Core 
(TM) i5-1235U. The code editor used in this study is Visual Studio Code®, which is widely used to 
develop and run ML algorithms, supports a wide range of programming languages and has a rich set of 
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extension libraries such as Python®, Jupyter Notebook®, and TensorFlow®. The selection of specific ML 
algorithms in this study is mainly based on their advantages in dealing with nonlinear feature 
relationships, high-dimensional data, and feature significance interpretation while considering their 
computational efficiency and applicability. 

The model evaluation indicators are selected in Equations 4 to 7 [39]. Accuracy is the proportion of 
samples with correct prediction results to the total samples; the higher the accuracy, the better. 
Precision is the proportion of results with optimistic predictions that are positive samples; the higher, 
the better for this metric. Recall is the proportion of positive samples that are positive. The higher the 
recall, the better; the F1-score is a comprehensive evaluation index that combines precision and recall; it 
is the harmonic mean of precision and recall. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

F1-Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 (8) 

Where, 𝑇𝑃 stands for True Positives, 𝑇𝑁 stands for True Negatives, 𝐹𝑃 stands for False Positives 

and 𝐹𝑁 stands for False Negatives. 
 

 
Figure 4.  
Five-fold cross-validation. 

 
The optimal hyperparameters of each ML model are obtained (see Figure 4) [40]. In the pre-

processing of the ML algorithms, all ML algorithms were “iterative” by selecting similar datasets; then, 
the hyperparameters were adjusted to obtain the best prediction results for each ML method chosen. 
Finally, Table 4 illustrates the information about the hyperparameters used to regulate the ML 
algorithm. 

Particle Swarm Optimization (PSO) is an optimization algorithm based on group intelligence, 
proposed by Marini and Walczak [41]. It simulates the behavior of groups of birds, fish, etc., when 
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searching for food and searches for optimal solutions through information sharing among individuals. 
The basic formula is as follows [42]: 
(1) Speed update formula 

𝑣𝑖(𝑡 + 1) = 𝑤 ⋅ 𝑣𝑖(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑖
best − 𝑥𝑖(𝑡)) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔best − 𝑥𝑖(𝑡)) (9) 

(2) Position update formula 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (10) 

Where, 𝑣𝑖(𝑡) is the velocity of particle 𝑖 at time 𝑡; 𝑥𝑖(𝑡) is the position of particle 𝑖 at time 𝑡; 𝑤 is the 

inertia weight; 𝑐1 and 𝑐2 are the acceleration constants; 𝑟1 and 𝑟2 are random numbers between [0, 1]; 

𝑝𝑖
best  is the historical best position of particle 𝑖; 𝑔best  is the global best position. 

 

 
Figure 5.  
Particle swarm optimization schematic. 

 
As indicated in Figure 5, it works as follows: 
(1). Randomly initialize the position and velocity of the particles. 
(2). Calculate the fitness value of each particle. 
(3). Update each particle's historical (individual best position). 
(4). Update the global (population best) position. 
(5). Update the velocity and position of each particle according to the velocity and position update 

formula. 
(6). Stop when the maximum number of iterations is reached, or accuracy requirements are met. 
The flock is composed of multiple particles, each representing a potential solution. Each particle has a 
position and velocity for moving in the search space, and the fitness function evaluates the merit of each 
particle's position (solution). 
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Table 4.  
Information of the hyper-parameters used for regulating the ML algorithms. 

ML Hyper-parameter Value ML Hyper-parameter Value 

PSO-
LightGBM 

n_estimators 100 

SVM 

random_state 2 

learning_rate 0.001 loss epsilon insensitive 
max_depth 15 tolerance 1e-04 

boosting type gbdt max_iter 2000 
number of leaves 32 kernel rbf 

AdaBoost 

n_estimators 100 

MLP 

loss mse 
learning_rate 0.001 hidden_layer 1 10 

min_samples_leaf 4 hidden_layer 2 10 

min_samples_split 6 hidden_layer 3 2 
max_depth 25 activation relu 

CatBoost 

n_estimators 500 optimizer adam 
learning_rate 0.02 max_iter 2000 

max_depth 16 

KNN 

n_neighbors 8 
min_samples_leaf 10 weights distance 

XGBoost 

n_estimators 3500 neighborhood global search 
learning_rate 0.01 leaf_size 25 

min_samples_leaf 20 p_value 2 

min_samples_split 10 

GBDT 

n_estimators 1000 
max_depth 8 learning_rate 0.01 

RF 
min_samples_leaf 15 min_samples_leaf 10 
min_samples_split 6 min_samples_split 12 

max_depth 25 max_depth 8 
Note: The training ratios are all 0.8. 

 
4.3. SHapley Additive exPlanation 

SHAP (SHapley Additive exPlanation) is a method for interpreting the predictions of ML models. It 
is based on Shapley values, an impartial method used in game theory to distribute the benefits of 
cooperation [43]. The SHAP value formula is as follows [44]: 

𝜙𝑖(𝑣) = ∑  

𝑆⊆𝑁∖{𝑖}

|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] (11) 

 

Where, 𝜙𝑖(𝑣) is the SHAP value of the feature 𝑖; 𝑁 is the set of all features; 𝑆 is a subset of 𝑁 

without feature 𝑖; 𝑣(𝑆) is the model output of the subset of features 𝑆. 
SHAP values provide each feature with the degree of its contribution to the prediction outcome, 

thus helping to understand the model's decision-making process. Figure 6 illustrates the SHAP value 
contribution of different features in the model to the predictions of the five categories (Type 1 – Type 5), 
thus revealing the importance and directionality of the features. The horizontal axis indicates the 
cumulative contribution of SHAP values, the colors distinguish different categories, and the length of 
the bars indicates the total contribution of features to the predictions of each category. Top-ranked 
features (e.g., S3, S5, E4, etc.) have a more significant impact on the projections of the classification 
model, with S3 contributing mainly to the type 5 category. In contrast, S5 and E4 contribute more to 
the type 4 and 3 categories. The total contribution of SHAP values for these features decreases as the 
ranking decreases (e.g., C1, F4), indicating that they are relatively less critical for model prediction. 

According to the weighting results of SHAP analysis, the social dimensions are ranked as 
S3>S5>S1>S4>S2; the emotional dimensions are ranked as E4>E1>E2>E5>E3; the functional 
dimensions are ranked as F1>F5>F3>F2>F4; and the cost dimensions are ranked as 
C4>C2>C5>C3>C1. 
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Figure 6.  
The weights of the features SHAP values. 

 
Among the social dimensions, improved environmental image (S3) has the highest ranking, 

indicating that users highly value demonstrating their ecological responsibility and social image 
through retrofitting, and this external recognition directly affects users' satisfaction. Sense of social 
responsibility (S5) follows, reflecting the intrinsic drive of users to fulfill their social responsibility by 
participating in net-zero energy retrofits. Social acceptance (S1) ranks third, indicating that users also 
care about the overall acceptance of their neighborhood and society. Still, it is slightly less critical 
because users focus on factors directly relating to their identity and image. In contrast, Media and social 
feedback (S4) and Neighborhood Interaction (S2) ranked lower because the influence of these factors on 



2520 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 3: 2508-2530, 2025 
DOI: 10.55214/25768484.v9i3.5835 
© 2025 by the authors; licensee Learning Gate 

 

user satisfaction is more dependent on specific socio-cultural and environmental contexts, and their 
effects are more indirect. 

Among the emotion dimensions, psychological identity and satisfaction (E4) ranked first, 
highlighting the deep emotional needs of users to participate in a green lifestyle and gain a sense of 
fulfillment. User participation (E1) ranked second, indicating that users want to express their wishes 
and see tangible results in the remodeling process, reinforcing satisfaction. Living comfort (E2) is third, 
reflecting a concern for indoor quality of life, but is slightly lower because users consider comfort a basic 
expectation rather than a core priority in decision-making. Personalized experience (E5) and Sense of 
security (E3) ranked lower due to their more limited specific impacts, with users' expectations of these 
factors tending to be more of an icing on the cake than a decisive influence. 

Energy efficiency improvement (F1) is the highest ranked of the functional Dimensions, indicating 
that when evaluating a net-zero energy retrofit, users are most concerned with whether the retrofit 
significantly reduces energy consumption and achieves sustainability goals. Building life extension (F5) 
was a close second, reflecting a strong concern about whether the retrofit would improve the overall 
durability and safety of the building. Facility reliability (F3) comes in third, with users concerned about 
the stability of retrofitted smart devices, but this is slightly less important than overall building 
performance. In contrast, indoor environment improvement (F2) and feature integration (F4) ranked 
lower, as users already have a basic expectation of indoor environment improvement, while the demand 
for smart feature integration is mainly an added value rather than a core need. 

In the cost dimension, government subsidies and support (C4) rank the highest, reflecting that 
policy incentives are an essential factor in lowering the threshold of user participation, which directly 
affects their motivation for retrofitting. Long-term energy cost savings (C2) is ranked second, indicating 
that users are interested in the initial investment and the long-term savings benefits. The payback 
period (C5) is third, indicating that customers want to see a return on their investment in a reasonable 
amount of time. Still, it is less important than direct subsidies and cost savings. Controllable 
maintenance costs (C3) and Reasonable retrofit costs (C1) ranked lower because users view these factors 
as essential safeguards and are more concerned with returns and support policies in their decision-
making. It is worth noting that the reason for the low sensitivity of the population to the value of the 
cost is that the Malaysian government provides a variety of subsidies and financial incentives to 
encourage energy-efficient building retrofits. For example, the government has introduced the Green 
Building Index (GBI) certification program, which provides tax incentives for certified buildings. There 
are also specific subsidy programs such as the Solaris Photovoltaic Incentive Program, which provides a 
subsidy of up to RM4,000 per kilowatt. In addition, Malaysia's relatively low cost of energy as an oil-
exporting country makes energy efficiency retrofits less financially stressful. 
 
4.4. Reconstruction of the Final Prediction Model 

According to the results of the SHAP analysis, we finally selected 9 indices (S3, S5, E4, F1, F5, E1, 
S1, E2, S4) to be used as input metrics for the final prediction model. SL was used as a dependent 
variable. Figures 7 and 8 show the model's performance. The initial test model obtained an accuracy of 
86.25%, a precision of 84.28%, a recall of 86.25%, and an F1-score of 0.842. The final test model 
obtained an accuracy of 89.64%, a precision of 93.68%, a recall of 89.64%, and an F1-score of 0.909. The 
optimization of model parameters by combining PSO improves the training accuracy from 99.36% to 
99.68% and the test set accuracy from 86.25% to 91.25%. This result indicates that the combination of 
feature streamlining and PSO optimization not only improves the model's ability to fit the training data 
but also significantly enhances its generalization performance on the test data, thus capturing the key 
factors of NZEB retrofit satisfaction more efficiently. 
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Figure 7.  
Accuracy of PSO-LightGBM model before and after tuning. 

 

 
Figure 8.  
Confusion matrix of the PSO-LightGBM model before and after tuning. 
 

Figure 9 illustrates that the area's value under the ROC (Receiver Operating Characteristic) curve is 
a key metric. The area of a perfect classifier is 1, while the area of a random classifier is 0.5 [45]. 
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Therefore, a good model, with the ROC curve closer to the upper left corner, has a higher area value 
(close to 1). The PR Curve (Precision-Recall Curve) is particularly useful when dealing with unbalanced 
datasets (e.g., when there are fewer positives than negatives.) The area under the PR Curve is also a key 
metric. Good models with high PR curves (close to 1) indicate high precision and recall across 
thresholds [46]. 
 

 
Figure 9.  
ROC and Precision-Recall curves before and after PSO-LightGBM model adjustment. 

 

The classification performance is significantly improved by reducing the number of features in the 
POS-LightGBM model from 20 to 9. Before the improvement, the ROC curves of each category 
performed better, with AUC values between 0.94 and 0.99, indicating that the model has strong 
differentiation ability. Still, the PR-AUC of some categories (e.g., Class 1) in the Precision-Recall curves 
was low at 0.812, which affected the overall prediction effect. After improvement, the ROC curve of the 
model is further optimized, and the AUC values of all categories are raised to 0.99 or 1.00. The AUC 
values of micro-averaging and macro-averaging also reach 0.99, close to the perfect classification 
performance. Meanwhile, the overall performance of the Precision-Recall curve is significantly 
improved, with the PR-AUC of Class 1 improved from 0.812 to 0.986 and the micro-average PR-AUC 
improved from 0.902 to 0.969, which fully demonstrates the balanced improvement of the model in 
precision and recall. This improvement is attributed to applying the feature refinement strategy; by 
removing redundant features and focusing on key features, the model avoids overfitting while enhancing 
its prediction ability for low-performing categories. This improves the model's classification accuracy 
and optimizes the overall stability and efficiency. 

As illustrated in Figure 10, the Partial Dependence Plot (PDP) shows the effect of each feature in 
the model on the prediction of different target categories. The horizontal axis of each plot indicates the 
range of feature values, and the vertical axis is the predicted value (Partial Dependence), with different 
colored curves corresponding to distinct categories. By looking at these curves, it is possible to analyze 
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the marginal contribution of features to the model's predictive output and identify which features are 
more critical in predicting specific categories. Some features (e.g., F1, S1) significantly impact model 
predictions, with a significant curve variation. For example, in F1, Class 3 (purple color) rises 
considerably with increasing feature values, indicating that F1 contributes more to the prediction of 
Class 3. In contrast, the curves change more gently for features like E4 and S4, suggesting they have a 
weaker effect on model prediction. In addition, curve crossovers (e.g., red and purple in the S1 plot) 
indicate that the differentiation between classes is weakened at certain eigenvalues and that there is a 
class-switching phenomenon. 
 

 
Figure 10.  
Partial dependence plot. 

 

5. Discussion 
5.1. Comparison with Other Machine Learning Models  

From the comparison results in Figure 11, PSO-LightGBM performs well when processing 
questionnaire data, with accuracy, precision, recall, and F1-score, all higher than most other models, 
indicating that it can balance accuracy while also capturing the pattern of the questionnaire data. The 
excellent performance of PSO-LightGBM can be attributed to its efficient processing of large-scale 
datasets and refined feature selection. PSO-LightGBM uses a leaf-splitting algorithm based on an 
improvement of gradient-boosted trees (GBDT), which significantly speeds up training while ensuring 
model accuracy [47]. It is especially suitable for datasets with high-dimensional feature spaces. 
Questionnaire data often has many feature variables, and PSO-LightGBM can quickly determine which 
features significantly impact the prediction results [48]. In contrast, SVM excels with small data sets 
and linearly separable problems, but its performance is susceptible to data noise in high-dimensional 
features and complex nonlinear issues [49]. More specifically, SVM requires nonlinear mapping by 
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kernel function in high-dimensional feature space. Although the kernel can capture nonlinear 
relationships, choosing kernel parameters in high-dimensional data significantly impacts the model's 
performance. In our experiments, the standard kernel function (RBF kernel) fails to model these 
complex relationships effectively, resulting in degraded classification performance. KNN, which is 
sensitive to the size of the data and the distribution of the feature space because it relies on a distance 
metric, performed relatively poorly on this dataset, indicating that it could not capture the patterns in 
the questionnaire data effectively. RF performs well in dealing with missing data but is relatively weak 
in feature importance interpretability; MLP performs well in data with large-scale nonlinear and 
continuous features but requires extensive parameter tuning and is susceptible to overfitting. 

 

 
Figure 11.  
ML models performance comparison. 
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XGBoost and GBDT are also based on gradient boosting algorithms, but XGBoost uses a 
sequential weighted and cumulative optimization strategy [50]. Although its performance was good, it 
was slightly inferior to PSO-LightGBM, probably because its splitting method consumed more 
computing resources and was less efficient than PSO-LightGBM at learning complex non-linear 
relationships. LightGBM has fewer parameters, and it is relatively easier to find the global optimal 
parameters through PSO. CatBoost has a more complex parameter space (e.g., internal mechanisms to 
support automatic coding of category variables, depth control, etc.). Adaboost performed poorly, 
reflecting that its approach of combining weak learners was ineffective at improving model performance 
when dealing with high-dimensional, non-linear, and noisy data [51]. 
 
5.2. Satisfaction Improvement Strategy 

In terms of functionality, the key to improving residents’ satisfaction is to ensure that the renovated 
building meets expectations in terms of energy efficiency, comfort, and ease of use of equipment. Smart 
home systems and efficient energy management equipment can reduce energy consumption while 
improving the living experience [52]. In addition, it is essential to ensure the equipment's stability and 
ease of operation, reduce the threshold for users to use and the difficulty of maintenance, and enhance 
users’ acceptance of intelligent functions. For example, retrofitting measures undertaken by Andreas et 
al. included installing an HVAC system, covering the building envelope with external insulation, 
replacing lighting with LED fittings, installing a photovoltaic system and solar panels, and replacing 
external openings with aluminum windows. The energy consumption of the renovated building in 

Cyprus was reduced from 468 kWh/m2·yr to 218 kWh/m2·yr, with renewable energy sources (RES) 

contributing 177 kWh/m2·yr and emissions of carbon dioxide from 136.73 kg/m2·yr to 11.5 kg/m2·yr. 
Each sector reduced energy consumption, ranging from 25% for lighting to 83% for hot water [53]. We 
also recommend a parametric analysis to select the proper technical and financial criteria to determine 
the optimal technology mix [52]. Integrating building functions and extending building life should also 
be considered to improve residents' confidence in the renovation results. 

In terms of emotions, as reflected in Figure 12, residents' sense of participation in the decision-
making process should be enhanced, and their opinions and needs should be fully considered to ensure 
that they can see personalized customization, including thermal comfort and indoor air quality [54]. At 
the same time, users' sense of psychological belonging and accomplishment should be enhanced by 
improving the residence's sense of security through design, such as optimizing privacy and security 
equipment. Most occupants lack knowledge of ventilation and manual controls, leading them to alleviate 
discomfort by blocking diffusers or disconnecting devices when the machinery malfunctions [55]. 
Therefore, new retrofit practices should pay special attention to the user-friendliness of the technical 
facilities, clearly communicate technical information to residents, and closely monitor the performance 
of the facilities. 

In terms of society, the focus should be on enhancing their sense of identity in the community and 
society. Strengthening community interaction can promote communication and consensus among 
neighbors, creating a positive community atmosphere. At the same time, positive media publicity and 
social recognition can further enhance the social image of users so that residents can gain social 
recognition for their environmentally friendly lifestyles. The UK's Green Deal, which was intended to 
improve energy efficiency (the target was 1 million households), ultimately failed because of its complex 
and bureaucratic procedures, interest rates higher than those for mortgages, and the sole aim of 
financial savings rather than improving social well-being [56]. 
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Figure 12.  
Decision-making process for NZEB retrofit. 

 
In terms of cost, retrofitting projects should ensure cost transparency and reasonableness. Given 

Malaysia's high energy costs, we recommend that renewable energy incentives abandon feed-in tariffs 
and subsidies for direct energy use, storage, and load matching. Future optimization analyses should 
also quantify the costs of thermal discomfort, energy poverty, and grid mismatches [57]. At the same 
time, the retrofitted buildings should reflect long-term energy cost savings and bring substantial 
economic returns to users. The potential of ML algorithms in this field has been demonstrated in this 
study. In the future, attempts could be made to use a combination of energy simulation and more 
intelligent algorithms to determine the optimal cost plan. For example, Heravi, et al. [58] combined 
energy simulation with a non-dominated sorting genetic algorithm to determine the optimal cost plan 
for designing a nearly zero-energy residential building in Kabul, Afghanistan's capital and largest city. 
The plan has a payback period of two years and a total energy reduction of 83%. Using a tabu search 
optimization algorithm, Munguba, et al. [59] determined a solution that minimizes electricity intensity 
and life cycle costs over 25 years. This method integrates thermal modeling and economic analysis to 
determine synergistic retrofits and PV sizing configurations, reducing consumption by 45 MWh/year 
and increasing net present value (NPV) by over $170,000 without additional investment (relative to 
baseline performance). 
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6. Conclusion 
In the current global energy crisis and climate change, renovating zero-energy buildings has 

become essential to improving energy efficiency and reducing carbon emissions. However, residents' 
satisfaction with renovation projects is crucial to their promotion and implementation. Therefore, based 
on the combination of customer perceived value theory and multiple machine learning (ML) algorithms, 
we systematically analyzed the factor system that affects the satisfaction of zero-energy building 
renovations, including four dimensions: functional, emotional, social, and cost. Multiple indicators in 
these dimensions, such as energy efficiency improvement, living comfort, personalized experience, and 
economic returns, directly affect residents' acceptance and evaluation of retrofit projects. At the same 
time, by comparing the performance of different ML models (AdaBoost, XGBoost, etc.), it is proved that 
PSO-LightGBM has superior performance when processing questionnaire data, especially in terms of 
accuracy, precision, and F1 score, which provides strong support for the subsequent satisfaction 
prediction of related projects. 

It is worth noting that the data collection for this study was limited to Malaysia, a geographical 
limitation that restricts the generalizability of the findings to other countries and regions. Malaysia's 
national cultural characteristics (e.g., high collectivism and substantial power distance) and economic 
context (e.g., lower energy costs and government policy support for sustainable buildings) uniquely 
influence the prioritization of customer perceived value and satisfaction factors. These cultural and 
economic factors result in findings more reflective of localized needs and preferences and cannot be 
directly generalized to countries with different cultural or economic backgrounds. In addition, referring 
to Sougkakis, et al. [60] we plan to introduce multi-region data and conduct long-term tracking 
analysis in our follow-up study, as well as try to optimize the performance using a hybrid ML model to 
validate the generalizability of the study's conclusions and deeply explore the dynamic change patterns 
of satisfaction. 
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